TYPE3
[iec.git] / src / type3_AndroidCloud / anbox-master / android / camera / EmulatedFakeCamera3.cpp
1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16
17 /*
18  * Contains implementation of a class EmulatedFakeCamera3 that encapsulates
19  * functionality of an advanced fake camera.
20  */
21
22 #include <inttypes.h>
23
24 //#define LOG_NDEBUG 0
25 //#define LOG_NNDEBUG 0
26 #define LOG_TAG "EmulatedCamera_FakeCamera3"
27 #include <cutils/properties.h>
28 #include <utils/Log.h>
29
30 #include "EmulatedFakeCamera3.h"
31 #include "EmulatedCameraFactory.h"
32 #include <ui/Fence.h>
33 #include <ui/Rect.h>
34 #include <ui/GraphicBufferMapper.h>
35 #include "gralloc_cb.h"
36
37 #include "fake-pipeline2/Sensor.h"
38 #include "fake-pipeline2/JpegCompressor.h"
39 #include <cmath>
40
41 #include <vector>
42
43 #if defined(LOG_NNDEBUG) && LOG_NNDEBUG == 0
44 #define ALOGVV ALOGV
45 #else
46 #define ALOGVV(...) ((void)0)
47 #endif
48
49 namespace android {
50
51 /**
52  * Constants for camera capabilities
53  */
54
55 const int64_t USEC = 1000LL;
56 const int64_t MSEC = USEC * 1000LL;
57 const int64_t SEC = MSEC * 1000LL;
58
59 const int32_t EmulatedFakeCamera3::kAvailableFormats[] = {
60         HAL_PIXEL_FORMAT_RAW16,
61         HAL_PIXEL_FORMAT_BLOB,
62         HAL_PIXEL_FORMAT_RGBA_8888,
63         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED,
64         // These are handled by YCbCr_420_888
65         //        HAL_PIXEL_FORMAT_YV12,
66         //        HAL_PIXEL_FORMAT_YCrCb_420_SP,
67         HAL_PIXEL_FORMAT_YCbCr_420_888,
68         HAL_PIXEL_FORMAT_Y16
69 };
70
71 /**
72  * 3A constants
73  */
74
75 // Default exposure and gain targets for different scenarios
76 const nsecs_t EmulatedFakeCamera3::kNormalExposureTime       = 10 * MSEC;
77 const nsecs_t EmulatedFakeCamera3::kFacePriorityExposureTime = 30 * MSEC;
78 const int     EmulatedFakeCamera3::kNormalSensitivity        = 100;
79 const int     EmulatedFakeCamera3::kFacePrioritySensitivity  = 400;
80 const float   EmulatedFakeCamera3::kExposureTrackRate        = 0.1;
81 const int     EmulatedFakeCamera3::kPrecaptureMinFrames      = 10;
82 const int     EmulatedFakeCamera3::kStableAeMaxFrames        = 100;
83 const float   EmulatedFakeCamera3::kExposureWanderMin        = -2;
84 const float   EmulatedFakeCamera3::kExposureWanderMax        = 1;
85
86 /**
87  * Camera device lifecycle methods
88  */
89
90 EmulatedFakeCamera3::EmulatedFakeCamera3(int cameraId, bool facingBack,
91         struct hw_module_t* module) :
92         EmulatedCamera3(cameraId, module),
93         mFacingBack(facingBack) {
94     ALOGI("Constructing emulated fake camera 3: ID %d, facing %s",
95             mCameraID, facingBack ? "back" : "front");
96
97     for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) {
98         mDefaultTemplates[i] = NULL;
99     }
100
101 }
102
103 EmulatedFakeCamera3::~EmulatedFakeCamera3() {
104     for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) {
105         if (mDefaultTemplates[i] != NULL) {
106             free_camera_metadata(mDefaultTemplates[i]);
107         }
108     }
109 }
110
111 status_t EmulatedFakeCamera3::Initialize() {
112     ALOGV("%s: E", __FUNCTION__);
113     status_t res;
114
115     if (mStatus != STATUS_ERROR) {
116         ALOGE("%s: Already initialized!", __FUNCTION__);
117         return INVALID_OPERATION;
118     }
119
120     res = getCameraCapabilities();
121     if (res != OK) {
122         ALOGE("%s: Unable to get camera capabilities: %s (%d)",
123                 __FUNCTION__, strerror(-res), res);
124         return res;
125     }
126
127     res = constructStaticInfo();
128     if (res != OK) {
129         ALOGE("%s: Unable to allocate static info: %s (%d)",
130                 __FUNCTION__, strerror(-res), res);
131         return res;
132     }
133
134     return EmulatedCamera3::Initialize();
135 }
136
137 status_t EmulatedFakeCamera3::connectCamera(hw_device_t** device) {
138     ALOGV("%s: E", __FUNCTION__);
139     Mutex::Autolock l(mLock);
140     status_t res;
141
142     if (mStatus != STATUS_CLOSED) {
143         ALOGE("%s: Can't connect in state %d", __FUNCTION__, mStatus);
144         return INVALID_OPERATION;
145     }
146
147     mSensor = new Sensor();
148     mSensor->setSensorListener(this);
149
150     res = mSensor->startUp();
151     if (res != NO_ERROR) return res;
152
153     mReadoutThread = new ReadoutThread(this);
154     mJpegCompressor = new JpegCompressor();
155
156     res = mReadoutThread->run("EmuCam3::readoutThread");
157     if (res != NO_ERROR) return res;
158
159     // Initialize fake 3A
160
161     mControlMode  = ANDROID_CONTROL_MODE_AUTO;
162     mFacePriority = false;
163     mAeMode       = ANDROID_CONTROL_AE_MODE_ON;
164     mAfMode       = ANDROID_CONTROL_AF_MODE_AUTO;
165     mAwbMode      = ANDROID_CONTROL_AWB_MODE_AUTO;
166     mAeState      = ANDROID_CONTROL_AE_STATE_INACTIVE;
167     mAfState      = ANDROID_CONTROL_AF_STATE_INACTIVE;
168     mAwbState     = ANDROID_CONTROL_AWB_STATE_INACTIVE;
169     mAeCounter    = 0;
170     mAeTargetExposureTime = kNormalExposureTime;
171     mAeCurrentExposureTime = kNormalExposureTime;
172     mAeCurrentSensitivity  = kNormalSensitivity;
173
174     return EmulatedCamera3::connectCamera(device);
175 }
176
177 status_t EmulatedFakeCamera3::closeCamera() {
178     ALOGV("%s: E", __FUNCTION__);
179     status_t res;
180     {
181         Mutex::Autolock l(mLock);
182         if (mStatus == STATUS_CLOSED) return OK;
183
184         res = mSensor->shutDown();
185         if (res != NO_ERROR) {
186             ALOGE("%s: Unable to shut down sensor: %d", __FUNCTION__, res);
187             return res;
188         }
189         mSensor.clear();
190
191         mReadoutThread->requestExit();
192     }
193
194     mReadoutThread->join();
195
196     {
197         Mutex::Autolock l(mLock);
198         // Clear out private stream information
199         for (StreamIterator s = mStreams.begin(); s != mStreams.end(); s++) {
200             PrivateStreamInfo *privStream =
201                     static_cast<PrivateStreamInfo*>((*s)->priv);
202             delete privStream;
203             (*s)->priv = NULL;
204         }
205         mStreams.clear();
206         mReadoutThread.clear();
207     }
208
209     return EmulatedCamera3::closeCamera();
210 }
211
212 status_t EmulatedFakeCamera3::getCameraInfo(struct camera_info *info) {
213     info->facing = mFacingBack ? CAMERA_FACING_BACK : CAMERA_FACING_FRONT;
214     info->orientation = gEmulatedCameraFactory.getFakeCameraOrientation();
215     return EmulatedCamera3::getCameraInfo(info);
216 }
217
218 /**
219  * Camera3 interface methods
220  */
221
222 status_t EmulatedFakeCamera3::configureStreams(
223         camera3_stream_configuration *streamList) {
224     Mutex::Autolock l(mLock);
225     ALOGV("%s: %d streams", __FUNCTION__, streamList->num_streams);
226
227     if (mStatus != STATUS_OPEN && mStatus != STATUS_READY) {
228         ALOGE("%s: Cannot configure streams in state %d",
229                 __FUNCTION__, mStatus);
230         return NO_INIT;
231     }
232
233     /**
234      * Sanity-check input list.
235      */
236     if (streamList == NULL) {
237         ALOGE("%s: NULL stream configuration", __FUNCTION__);
238         return BAD_VALUE;
239     }
240
241     if (streamList->streams == NULL) {
242         ALOGE("%s: NULL stream list", __FUNCTION__);
243         return BAD_VALUE;
244     }
245
246     if (streamList->num_streams < 1) {
247         ALOGE("%s: Bad number of streams requested: %d", __FUNCTION__,
248                 streamList->num_streams);
249         return BAD_VALUE;
250     }
251
252     camera3_stream_t *inputStream = NULL;
253     for (size_t i = 0; i < streamList->num_streams; i++) {
254         camera3_stream_t *newStream = streamList->streams[i];
255
256         if (newStream == NULL) {
257             ALOGE("%s: Stream index %zu was NULL",
258                   __FUNCTION__, i);
259             return BAD_VALUE;
260         }
261
262         ALOGV("%s: Stream %p (id %zu), type %d, usage 0x%x, format 0x%x",
263                 __FUNCTION__, newStream, i, newStream->stream_type,
264                 newStream->usage,
265                 newStream->format);
266
267         if (newStream->stream_type == CAMERA3_STREAM_INPUT ||
268             newStream->stream_type == CAMERA3_STREAM_BIDIRECTIONAL) {
269             if (inputStream != NULL) {
270
271                 ALOGE("%s: Multiple input streams requested!", __FUNCTION__);
272                 return BAD_VALUE;
273             }
274             inputStream = newStream;
275         }
276
277         bool validFormat = false;
278         for (size_t f = 0;
279              f < sizeof(kAvailableFormats)/sizeof(kAvailableFormats[0]);
280              f++) {
281             if (newStream->format == kAvailableFormats[f]) {
282                 validFormat = true;
283                 break;
284             }
285         }
286         if (!validFormat) {
287             ALOGE("%s: Unsupported stream format 0x%x requested",
288                     __FUNCTION__, newStream->format);
289             return BAD_VALUE;
290         }
291     }
292     mInputStream = inputStream;
293
294     /**
295      * Initially mark all existing streams as not alive
296      */
297     for (StreamIterator s = mStreams.begin(); s != mStreams.end(); ++s) {
298         PrivateStreamInfo *privStream =
299                 static_cast<PrivateStreamInfo*>((*s)->priv);
300         privStream->alive = false;
301     }
302
303     /**
304      * Find new streams and mark still-alive ones
305      */
306     for (size_t i = 0; i < streamList->num_streams; i++) {
307         camera3_stream_t *newStream = streamList->streams[i];
308         if (newStream->priv == NULL) {
309             // New stream, construct info
310             PrivateStreamInfo *privStream = new PrivateStreamInfo();
311             privStream->alive = true;
312
313             newStream->max_buffers = kMaxBufferCount;
314             newStream->priv = privStream;
315             mStreams.push_back(newStream);
316         } else {
317             // Existing stream, mark as still alive.
318             PrivateStreamInfo *privStream =
319                     static_cast<PrivateStreamInfo*>(newStream->priv);
320             privStream->alive = true;
321         }
322         // Always update usage and max buffers
323         newStream->max_buffers = kMaxBufferCount;
324         switch (newStream->stream_type) {
325             case CAMERA3_STREAM_OUTPUT:
326                 newStream->usage = GRALLOC_USAGE_HW_CAMERA_WRITE;
327                 break;
328             case CAMERA3_STREAM_INPUT:
329                 newStream->usage = GRALLOC_USAGE_HW_CAMERA_READ;
330                 break;
331             case CAMERA3_STREAM_BIDIRECTIONAL:
332                 newStream->usage = GRALLOC_USAGE_HW_CAMERA_READ |
333                         GRALLOC_USAGE_HW_CAMERA_WRITE;
334                 break;
335         }
336     }
337
338     /**
339      * Reap the dead streams
340      */
341     for (StreamIterator s = mStreams.begin(); s != mStreams.end();) {
342         PrivateStreamInfo *privStream =
343                 static_cast<PrivateStreamInfo*>((*s)->priv);
344         if (!privStream->alive) {
345             (*s)->priv = NULL;
346             delete privStream;
347             s = mStreams.erase(s);
348         } else {
349             ++s;
350         }
351     }
352
353     /**
354      * Can't reuse settings across configure call
355      */
356     mPrevSettings.clear();
357
358     return OK;
359 }
360
361 status_t EmulatedFakeCamera3::registerStreamBuffers(
362         const camera3_stream_buffer_set *bufferSet) {
363     ALOGV("%s: E", __FUNCTION__);
364     Mutex::Autolock l(mLock);
365
366     // Should not be called in HAL versions >= 3.2
367
368     ALOGE("%s: Should not be invoked on new HALs!",
369             __FUNCTION__);
370     return NO_INIT;
371 }
372
373 const camera_metadata_t* EmulatedFakeCamera3::constructDefaultRequestSettings(
374         int type) {
375     ALOGV("%s: E", __FUNCTION__);
376     Mutex::Autolock l(mLock);
377
378     if (type < 0 || type >= CAMERA3_TEMPLATE_COUNT) {
379         ALOGE("%s: Unknown request settings template: %d",
380                 __FUNCTION__, type);
381         return NULL;
382     }
383
384     if (!hasCapability(BACKWARD_COMPATIBLE) && type != CAMERA3_TEMPLATE_PREVIEW) {
385         ALOGE("%s: Template %d not supported w/o BACKWARD_COMPATIBLE capability",
386                 __FUNCTION__, type);
387         return NULL;
388     }
389
390     /**
391      * Cache is not just an optimization - pointer returned has to live at
392      * least as long as the camera device instance does.
393      */
394     if (mDefaultTemplates[type] != NULL) {
395         return mDefaultTemplates[type];
396     }
397
398     CameraMetadata settings;
399
400     /** android.request */
401
402     static const uint8_t metadataMode = ANDROID_REQUEST_METADATA_MODE_FULL;
403     settings.update(ANDROID_REQUEST_METADATA_MODE, &metadataMode, 1);
404
405     static const int32_t id = 0;
406     settings.update(ANDROID_REQUEST_ID, &id, 1);
407
408     static const int32_t frameCount = 0;
409     settings.update(ANDROID_REQUEST_FRAME_COUNT, &frameCount, 1);
410
411     /** android.lens */
412
413     static const float focalLength = 5.0f;
414     settings.update(ANDROID_LENS_FOCAL_LENGTH, &focalLength, 1);
415
416     if (hasCapability(BACKWARD_COMPATIBLE)) {
417         static const float focusDistance = 0;
418         settings.update(ANDROID_LENS_FOCUS_DISTANCE, &focusDistance, 1);
419
420         static const float aperture = 2.8f;
421         settings.update(ANDROID_LENS_APERTURE, &aperture, 1);
422
423         static const float filterDensity = 0;
424         settings.update(ANDROID_LENS_FILTER_DENSITY, &filterDensity, 1);
425
426         static const uint8_t opticalStabilizationMode =
427                 ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
428         settings.update(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
429                 &opticalStabilizationMode, 1);
430
431         // FOCUS_RANGE set only in frame
432     }
433
434     /** android.sensor */
435
436     if (hasCapability(MANUAL_SENSOR)) {
437         static const int64_t exposureTime = 10 * MSEC;
438         settings.update(ANDROID_SENSOR_EXPOSURE_TIME, &exposureTime, 1);
439
440         static const int64_t frameDuration = 33333333L; // 1/30 s
441         settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);
442
443         static const int32_t sensitivity = 100;
444         settings.update(ANDROID_SENSOR_SENSITIVITY, &sensitivity, 1);
445     }
446
447     // TIMESTAMP set only in frame
448
449     /** android.flash */
450
451     if (hasCapability(BACKWARD_COMPATIBLE)) {
452         static const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
453         settings.update(ANDROID_FLASH_MODE, &flashMode, 1);
454
455         static const uint8_t flashPower = 10;
456         settings.update(ANDROID_FLASH_FIRING_POWER, &flashPower, 1);
457
458         static const int64_t firingTime = 0;
459         settings.update(ANDROID_FLASH_FIRING_TIME, &firingTime, 1);
460     }
461
462     /** Processing block modes */
463     if (hasCapability(MANUAL_POST_PROCESSING)) {
464         uint8_t hotPixelMode = 0;
465         uint8_t demosaicMode = 0;
466         uint8_t noiseMode = 0;
467         uint8_t shadingMode = 0;
468         uint8_t colorMode = 0;
469         uint8_t tonemapMode = 0;
470         uint8_t edgeMode = 0;
471         switch (type) {
472             case CAMERA3_TEMPLATE_STILL_CAPTURE:
473                 // fall-through
474             case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
475                 // fall-through
476             case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
477                 hotPixelMode = ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY;
478                 demosaicMode = ANDROID_DEMOSAIC_MODE_HIGH_QUALITY;
479                 noiseMode = ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY;
480                 shadingMode = ANDROID_SHADING_MODE_HIGH_QUALITY;
481                 colorMode = ANDROID_COLOR_CORRECTION_MODE_HIGH_QUALITY;
482                 tonemapMode = ANDROID_TONEMAP_MODE_HIGH_QUALITY;
483                 edgeMode = ANDROID_EDGE_MODE_HIGH_QUALITY;
484                 break;
485             case CAMERA3_TEMPLATE_PREVIEW:
486                 // fall-through
487             case CAMERA3_TEMPLATE_VIDEO_RECORD:
488                 // fall-through
489             default:
490                 hotPixelMode = ANDROID_HOT_PIXEL_MODE_FAST;
491                 demosaicMode = ANDROID_DEMOSAIC_MODE_FAST;
492                 noiseMode = ANDROID_NOISE_REDUCTION_MODE_FAST;
493                 shadingMode = ANDROID_SHADING_MODE_FAST;
494                 colorMode = ANDROID_COLOR_CORRECTION_MODE_FAST;
495                 tonemapMode = ANDROID_TONEMAP_MODE_FAST;
496                 edgeMode = ANDROID_EDGE_MODE_FAST;
497                 break;
498         }
499         settings.update(ANDROID_HOT_PIXEL_MODE, &hotPixelMode, 1);
500         settings.update(ANDROID_DEMOSAIC_MODE, &demosaicMode, 1);
501         settings.update(ANDROID_NOISE_REDUCTION_MODE, &noiseMode, 1);
502         settings.update(ANDROID_SHADING_MODE, &shadingMode, 1);
503         settings.update(ANDROID_COLOR_CORRECTION_MODE, &colorMode, 1);
504         settings.update(ANDROID_TONEMAP_MODE, &tonemapMode, 1);
505         settings.update(ANDROID_EDGE_MODE, &edgeMode, 1);
506     }
507
508     /** android.colorCorrection */
509
510     if (hasCapability(MANUAL_POST_PROCESSING)) {
511         static const camera_metadata_rational colorTransform[9] = {
512             {1,1}, {0,1}, {0,1},
513             {0,1}, {1,1}, {0,1},
514             {0,1}, {0,1}, {1,1}
515         };
516         settings.update(ANDROID_COLOR_CORRECTION_TRANSFORM, colorTransform, 9);
517
518         static const float colorGains[4] = {
519             1.0f, 1.0f, 1.0f, 1.0f
520         };
521         settings.update(ANDROID_COLOR_CORRECTION_GAINS, colorGains, 4);
522     }
523
524     /** android.tonemap */
525
526     if (hasCapability(MANUAL_POST_PROCESSING)) {
527         static const float tonemapCurve[4] = {
528             0.f, 0.f,
529             1.f, 1.f
530         };
531         settings.update(ANDROID_TONEMAP_CURVE_RED, tonemapCurve, 4);
532         settings.update(ANDROID_TONEMAP_CURVE_GREEN, tonemapCurve, 4);
533         settings.update(ANDROID_TONEMAP_CURVE_BLUE, tonemapCurve, 4);
534     }
535
536     /** android.scaler */
537     if (hasCapability(BACKWARD_COMPATIBLE)) {
538         static const int32_t cropRegion[4] = {
539             0, 0, (int32_t)Sensor::kResolution[0], (int32_t)Sensor::kResolution[1]
540         };
541         settings.update(ANDROID_SCALER_CROP_REGION, cropRegion, 4);
542     }
543
544     /** android.jpeg */
545     if (hasCapability(BACKWARD_COMPATIBLE)) {
546         static const uint8_t jpegQuality = 80;
547         settings.update(ANDROID_JPEG_QUALITY, &jpegQuality, 1);
548
549         static const int32_t thumbnailSize[2] = {
550             640, 480
551         };
552         settings.update(ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
553
554         static const uint8_t thumbnailQuality = 80;
555         settings.update(ANDROID_JPEG_THUMBNAIL_QUALITY, &thumbnailQuality, 1);
556
557         static const double gpsCoordinates[2] = {
558             0, 0
559         };
560         settings.update(ANDROID_JPEG_GPS_COORDINATES, gpsCoordinates, 2);
561
562         static const uint8_t gpsProcessingMethod[32] = "None";
563         settings.update(ANDROID_JPEG_GPS_PROCESSING_METHOD, gpsProcessingMethod, 32);
564
565         static const int64_t gpsTimestamp = 0;
566         settings.update(ANDROID_JPEG_GPS_TIMESTAMP, &gpsTimestamp, 1);
567
568         static const int32_t jpegOrientation = 0;
569         settings.update(ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
570     }
571
572     /** android.stats */
573
574     if (hasCapability(BACKWARD_COMPATIBLE)) {
575         static const uint8_t faceDetectMode =
576                 ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
577         settings.update(ANDROID_STATISTICS_FACE_DETECT_MODE, &faceDetectMode, 1);
578
579         static const uint8_t hotPixelMapMode =
580                 ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF;
581         settings.update(ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotPixelMapMode, 1);
582     }
583
584     // faceRectangles, faceScores, faceLandmarks, faceIds, histogram,
585     // sharpnessMap only in frames
586
587     /** android.control */
588
589     uint8_t controlIntent = 0;
590     switch (type) {
591       case CAMERA3_TEMPLATE_PREVIEW:
592         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
593         break;
594       case CAMERA3_TEMPLATE_STILL_CAPTURE:
595         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
596         break;
597       case CAMERA3_TEMPLATE_VIDEO_RECORD:
598         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
599         break;
600       case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
601         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
602         break;
603       case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
604         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
605         break;
606       case CAMERA3_TEMPLATE_MANUAL:
607         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_MANUAL;
608         break;
609       default:
610         controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_CUSTOM;
611         break;
612     }
613     settings.update(ANDROID_CONTROL_CAPTURE_INTENT, &controlIntent, 1);
614
615     const uint8_t controlMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
616             ANDROID_CONTROL_MODE_OFF :
617             ANDROID_CONTROL_MODE_AUTO;
618     settings.update(ANDROID_CONTROL_MODE, &controlMode, 1);
619
620     int32_t aeTargetFpsRange[2] = {
621         5, 30
622     };
623     if (type == CAMERA3_TEMPLATE_VIDEO_RECORD || type == CAMERA3_TEMPLATE_VIDEO_SNAPSHOT) {
624         aeTargetFpsRange[0] = 30;
625     }
626     settings.update(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, aeTargetFpsRange, 2);
627
628     if (hasCapability(BACKWARD_COMPATIBLE)) {
629
630         static const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
631         settings.update(ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
632
633         static const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY;
634         settings.update(ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
635
636         const uint8_t aeMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
637                 ANDROID_CONTROL_AE_MODE_OFF :
638                 ANDROID_CONTROL_AE_MODE_ON;
639         settings.update(ANDROID_CONTROL_AE_MODE, &aeMode, 1);
640
641         static const uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
642         settings.update(ANDROID_CONTROL_AE_LOCK, &aeLock, 1);
643
644         static const int32_t controlRegions[5] = {
645             0, 0, 0, 0, 0
646         };
647         settings.update(ANDROID_CONTROL_AE_REGIONS, controlRegions, 5);
648
649         static const int32_t aeExpCompensation = 0;
650         settings.update(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &aeExpCompensation, 1);
651
652
653         static const uint8_t aeAntibandingMode =
654                 ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
655         settings.update(ANDROID_CONTROL_AE_ANTIBANDING_MODE, &aeAntibandingMode, 1);
656
657         static const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE;
658         settings.update(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1);
659
660         const uint8_t awbMode = (type == CAMERA3_TEMPLATE_MANUAL) ?
661                 ANDROID_CONTROL_AWB_MODE_OFF :
662                 ANDROID_CONTROL_AWB_MODE_AUTO;
663         settings.update(ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
664
665         static const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
666         settings.update(ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
667
668         uint8_t afMode = 0;
669         switch (type) {
670             case CAMERA3_TEMPLATE_PREVIEW:
671                 afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
672                 break;
673             case CAMERA3_TEMPLATE_STILL_CAPTURE:
674                 afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
675                 break;
676             case CAMERA3_TEMPLATE_VIDEO_RECORD:
677                 afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
678                 break;
679             case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
680                 afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
681                 break;
682             case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
683                 afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
684                 break;
685             case CAMERA3_TEMPLATE_MANUAL:
686                 afMode = ANDROID_CONTROL_AF_MODE_OFF;
687                 break;
688             default:
689                 afMode = ANDROID_CONTROL_AF_MODE_AUTO;
690                 break;
691         }
692         settings.update(ANDROID_CONTROL_AF_MODE, &afMode, 1);
693
694         settings.update(ANDROID_CONTROL_AF_REGIONS, controlRegions, 5);
695
696         static const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
697         settings.update(ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1);
698
699         static const uint8_t vstabMode =
700                 ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
701         settings.update(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &vstabMode, 1);
702
703         static const uint8_t blackLevelLock = ANDROID_BLACK_LEVEL_LOCK_OFF;
704         settings.update(ANDROID_BLACK_LEVEL_LOCK, &blackLevelLock, 1);
705
706         static const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF;
707         settings.update(ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1);
708
709         static const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_FAST;
710         settings.update(ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1);
711
712         static const int32_t testPatternMode = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF;
713         settings.update(ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternMode, 1);
714     }
715
716     mDefaultTemplates[type] = settings.release();
717
718     return mDefaultTemplates[type];
719 }
720
721 status_t EmulatedFakeCamera3::processCaptureRequest(
722         camera3_capture_request *request) {
723
724     Mutex::Autolock l(mLock);
725     status_t res;
726
727     /** Validation */
728
729     if (mStatus < STATUS_READY) {
730         ALOGE("%s: Can't submit capture requests in state %d", __FUNCTION__,
731                 mStatus);
732         return INVALID_OPERATION;
733     }
734
735     if (request == NULL) {
736         ALOGE("%s: NULL request!", __FUNCTION__);
737         return BAD_VALUE;
738     }
739
740     uint32_t frameNumber = request->frame_number;
741
742     if (request->settings == NULL && mPrevSettings.isEmpty()) {
743         ALOGE("%s: Request %d: NULL settings for first request after"
744                 "configureStreams()", __FUNCTION__, frameNumber);
745         return BAD_VALUE;
746     }
747
748     if (request->input_buffer != NULL &&
749             request->input_buffer->stream != mInputStream) {
750         ALOGE("%s: Request %d: Input buffer not from input stream!",
751                 __FUNCTION__, frameNumber);
752         ALOGV("%s: Bad stream %p, expected: %p",
753               __FUNCTION__, request->input_buffer->stream,
754               mInputStream);
755         ALOGV("%s: Bad stream type %d, expected stream type %d",
756               __FUNCTION__, request->input_buffer->stream->stream_type,
757               mInputStream ? mInputStream->stream_type : -1);
758
759         return BAD_VALUE;
760     }
761
762     if (request->num_output_buffers < 1 || request->output_buffers == NULL) {
763         ALOGE("%s: Request %d: No output buffers provided!",
764                 __FUNCTION__, frameNumber);
765         return BAD_VALUE;
766     }
767
768     // Validate all buffers, starting with input buffer if it's given
769
770     ssize_t idx;
771     const camera3_stream_buffer_t *b;
772     if (request->input_buffer != NULL) {
773         idx = -1;
774         b = request->input_buffer;
775     } else {
776         idx = 0;
777         b = request->output_buffers;
778     }
779     do {
780         PrivateStreamInfo *priv =
781                 static_cast<PrivateStreamInfo*>(b->stream->priv);
782         if (priv == NULL) {
783             ALOGE("%s: Request %d: Buffer %zu: Unconfigured stream!",
784                     __FUNCTION__, frameNumber, idx);
785             return BAD_VALUE;
786         }
787         if (!priv->alive) {
788             ALOGE("%s: Request %d: Buffer %zu: Dead stream!",
789                     __FUNCTION__, frameNumber, idx);
790             return BAD_VALUE;
791         }
792         if (b->status != CAMERA3_BUFFER_STATUS_OK) {
793             ALOGE("%s: Request %d: Buffer %zu: Status not OK!",
794                     __FUNCTION__, frameNumber, idx);
795             return BAD_VALUE;
796         }
797         if (b->release_fence != -1) {
798             ALOGE("%s: Request %d: Buffer %zu: Has a release fence!",
799                     __FUNCTION__, frameNumber, idx);
800             return BAD_VALUE;
801         }
802         if (b->buffer == NULL) {
803             ALOGE("%s: Request %d: Buffer %zu: NULL buffer handle!",
804                     __FUNCTION__, frameNumber, idx);
805             return BAD_VALUE;
806         }
807         idx++;
808         b = &(request->output_buffers[idx]);
809     } while (idx < (ssize_t)request->num_output_buffers);
810
811     // TODO: Validate settings parameters
812
813     /**
814      * Start processing this request
815      */
816
817     mStatus = STATUS_ACTIVE;
818
819     CameraMetadata settings;
820
821     if (request->settings == NULL) {
822         settings.acquire(mPrevSettings);
823     } else {
824         settings = request->settings;
825     }
826
827     res = process3A(settings);
828     if (res != OK) {
829         return res;
830     }
831
832     // TODO: Handle reprocessing
833
834     /**
835      * Get ready for sensor config
836      */
837
838     nsecs_t  exposureTime;
839     nsecs_t  frameDuration;
840     uint32_t sensitivity;
841     bool     needJpeg = false;
842     camera_metadata_entry_t entry;
843
844     entry = settings.find(ANDROID_SENSOR_EXPOSURE_TIME);
845     exposureTime = (entry.count > 0) ? entry.data.i64[0] : Sensor::kExposureTimeRange[0];
846     entry = settings.find(ANDROID_SENSOR_FRAME_DURATION);
847     frameDuration = (entry.count > 0)? entry.data.i64[0] : Sensor::kFrameDurationRange[0];
848     entry = settings.find(ANDROID_SENSOR_SENSITIVITY);
849     sensitivity = (entry.count > 0) ? entry.data.i32[0] : Sensor::kSensitivityRange[0];
850
851     if (exposureTime > frameDuration) {
852         frameDuration = exposureTime + Sensor::kMinVerticalBlank;
853         settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);
854     }
855
856     Buffers *sensorBuffers = new Buffers();
857     HalBufferVector *buffers = new HalBufferVector();
858
859     sensorBuffers->setCapacity(request->num_output_buffers);
860     buffers->setCapacity(request->num_output_buffers);
861
862     // Process all the buffers we got for output, constructing internal buffer
863     // structures for them, and lock them for writing.
864     for (size_t i = 0; i < request->num_output_buffers; i++) {
865         const camera3_stream_buffer &srcBuf = request->output_buffers[i];
866         const cb_handle_t *privBuffer =
867                 static_cast<const cb_handle_t*>(*srcBuf.buffer);
868         StreamBuffer destBuf;
869         destBuf.streamId = kGenericStreamId;
870         destBuf.width    = srcBuf.stream->width;
871         destBuf.height   = srcBuf.stream->height;
872         destBuf.format   = privBuffer->format; // Use real private format
873         destBuf.stride   = srcBuf.stream->width; // TODO: query from gralloc
874         destBuf.dataSpace = srcBuf.stream->data_space;
875         destBuf.buffer   = srcBuf.buffer;
876
877         if (destBuf.format == HAL_PIXEL_FORMAT_BLOB) {
878             needJpeg = true;
879         }
880
881         // Wait on fence
882         sp<Fence> bufferAcquireFence = new Fence(srcBuf.acquire_fence);
883         res = bufferAcquireFence->wait(kFenceTimeoutMs);
884         if (res == TIMED_OUT) {
885             ALOGE("%s: Request %d: Buffer %zu: Fence timed out after %d ms",
886                     __FUNCTION__, frameNumber, i, kFenceTimeoutMs);
887         }
888         if (res == OK) {
889             // Lock buffer for writing
890             const Rect rect(destBuf.width, destBuf.height);
891             if (srcBuf.stream->format == HAL_PIXEL_FORMAT_YCbCr_420_888) {
892                 if (privBuffer->format == HAL_PIXEL_FORMAT_YCrCb_420_SP) {
893                     android_ycbcr ycbcr = android_ycbcr();
894                     res = GraphicBufferMapper::get().lockYCbCr(
895                         *(destBuf.buffer),
896                         GRALLOC_USAGE_HW_CAMERA_WRITE, rect,
897                         &ycbcr);
898                     // This is only valid because we know that emulator's
899                     // YCbCr_420_888 is really contiguous NV21 under the hood
900                     destBuf.img = static_cast<uint8_t*>(ycbcr.y);
901                 } else {
902                     ALOGE("Unexpected private format for flexible YUV: 0x%x",
903                             privBuffer->format);
904                     res = INVALID_OPERATION;
905                 }
906             } else {
907                 res = GraphicBufferMapper::get().lock(*(destBuf.buffer),
908                         GRALLOC_USAGE_HW_CAMERA_WRITE, rect,
909                         (void**)&(destBuf.img));
910             }
911             if (res != OK) {
912                 ALOGE("%s: Request %d: Buffer %zu: Unable to lock buffer",
913                         __FUNCTION__, frameNumber, i);
914             }
915         }
916
917         if (res != OK) {
918             // Either waiting or locking failed. Unlock locked buffers and bail
919             // out.
920             for (size_t j = 0; j < i; j++) {
921                 GraphicBufferMapper::get().unlock(
922                         *(request->output_buffers[i].buffer));
923             }
924             return NO_INIT;
925         }
926
927         sensorBuffers->push_back(destBuf);
928         buffers->push_back(srcBuf);
929     }
930
931     /**
932      * Wait for JPEG compressor to not be busy, if needed
933      */
934     if (needJpeg) {
935         bool ready = mJpegCompressor->waitForDone(kFenceTimeoutMs);
936         if (!ready) {
937             ALOGE("%s: Timeout waiting for JPEG compression to complete!",
938                     __FUNCTION__);
939             return NO_INIT;
940         }
941     }
942
943     /**
944      * Wait until the in-flight queue has room
945      */
946     res = mReadoutThread->waitForReadout();
947     if (res != OK) {
948         ALOGE("%s: Timeout waiting for previous requests to complete!",
949                 __FUNCTION__);
950         return NO_INIT;
951     }
952
953     /**
954      * Wait until sensor's ready. This waits for lengthy amounts of time with
955      * mLock held, but the interface spec is that no other calls may by done to
956      * the HAL by the framework while process_capture_request is happening.
957      */
958     int syncTimeoutCount = 0;
959     while(!mSensor->waitForVSync(kSyncWaitTimeout)) {
960         if (mStatus == STATUS_ERROR) {
961             return NO_INIT;
962         }
963         if (syncTimeoutCount == kMaxSyncTimeoutCount) {
964             ALOGE("%s: Request %d: Sensor sync timed out after %" PRId64 " ms",
965                     __FUNCTION__, frameNumber,
966                     kSyncWaitTimeout * kMaxSyncTimeoutCount / 1000000);
967             return NO_INIT;
968         }
969         syncTimeoutCount++;
970     }
971
972     /**
973      * Configure sensor and queue up the request to the readout thread
974      */
975     mSensor->setExposureTime(exposureTime);
976     mSensor->setFrameDuration(frameDuration);
977     mSensor->setSensitivity(sensitivity);
978     mSensor->setDestinationBuffers(sensorBuffers);
979     mSensor->setFrameNumber(request->frame_number);
980
981     ReadoutThread::Request r;
982     r.frameNumber = request->frame_number;
983     r.settings = settings;
984     r.sensorBuffers = sensorBuffers;
985     r.buffers = buffers;
986
987     mReadoutThread->queueCaptureRequest(r);
988     ALOGVV("%s: Queued frame %d", __FUNCTION__, request->frame_number);
989
990     // Cache the settings for next time
991     mPrevSettings.acquire(settings);
992
993     return OK;
994 }
995
996 status_t EmulatedFakeCamera3::flush() {
997     ALOGW("%s: Not implemented; ignored", __FUNCTION__);
998     return OK;
999 }
1000
1001 /** Debug methods */
1002
1003 void EmulatedFakeCamera3::dump(int fd) {
1004
1005 }
1006
1007 /**
1008  * Private methods
1009  */
1010
1011 status_t EmulatedFakeCamera3::getCameraCapabilities() {
1012
1013     const char *key = mFacingBack ? "qemu.sf.back_camera_caps" : "qemu.sf.front_camera_caps";
1014
1015     /* Defined by 'qemu.sf.*_camera_caps' boot property: if the
1016      * property doesn't exist, it is assumed to list FULL. */
1017     char prop[PROPERTY_VALUE_MAX];
1018     if (property_get(key, prop, NULL) > 0) {
1019         char *saveptr = nullptr;
1020         char *cap = strtok_r(prop, " ,", &saveptr);
1021         while (cap != NULL) {
1022             for (int i = 0; i < NUM_CAPABILITIES; i++) {
1023                 if (!strcasecmp(cap, sAvailableCapabilitiesStrings[i])) {
1024                     mCapabilities.add(static_cast<AvailableCapabilities>(i));
1025                     break;
1026                 }
1027             }
1028             cap = strtok_r(NULL, " ,", &saveptr);
1029         }
1030         if (mCapabilities.size() == 0) {
1031             ALOGE("qemu.sf.back_camera_caps had no valid capabilities: %s", prop);
1032         }
1033     }
1034     // Default to FULL_LEVEL plus RAW if nothing is defined
1035     if (mCapabilities.size() == 0) {
1036         mCapabilities.add(FULL_LEVEL);
1037         mCapabilities.add(RAW);
1038     }
1039
1040     // Add level-based caps
1041     if (hasCapability(FULL_LEVEL)) {
1042         mCapabilities.add(BURST_CAPTURE);
1043         mCapabilities.add(READ_SENSOR_SETTINGS);
1044         mCapabilities.add(MANUAL_SENSOR);
1045         mCapabilities.add(MANUAL_POST_PROCESSING);
1046     };
1047
1048     // Backwards-compatible is required for most other caps
1049     // Not required for DEPTH_OUTPUT, though.
1050     if (hasCapability(BURST_CAPTURE) ||
1051             hasCapability(READ_SENSOR_SETTINGS) ||
1052             hasCapability(RAW) ||
1053             hasCapability(MANUAL_SENSOR) ||
1054             hasCapability(MANUAL_POST_PROCESSING) ||
1055             hasCapability(PRIVATE_REPROCESSING) ||
1056             hasCapability(YUV_REPROCESSING) ||
1057             hasCapability(CONSTRAINED_HIGH_SPEED_VIDEO)) {
1058         mCapabilities.add(BACKWARD_COMPATIBLE);
1059     }
1060
1061     ALOGI("Camera %d capabilities:", mCameraID);
1062     for (size_t i = 0; i < mCapabilities.size(); i++) {
1063         ALOGI("  %s", sAvailableCapabilitiesStrings[mCapabilities[i]]);
1064     }
1065
1066     return OK;
1067 }
1068
1069 bool EmulatedFakeCamera3::hasCapability(AvailableCapabilities cap) {
1070     ssize_t idx = mCapabilities.indexOf(cap);
1071     return idx >= 0;
1072 }
1073
1074 status_t EmulatedFakeCamera3::constructStaticInfo() {
1075
1076     CameraMetadata info;
1077     Vector<int32_t> availableCharacteristicsKeys;
1078     status_t res;
1079
1080 #define ADD_STATIC_ENTRY(name, varptr, count) \
1081         availableCharacteristicsKeys.add(name);   \
1082         res = info.update(name, varptr, count); \
1083         if (res != OK) return res
1084
1085     // android.sensor
1086
1087     if (hasCapability(MANUAL_SENSOR)) {
1088
1089         ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
1090                 Sensor::kExposureTimeRange, 2);
1091
1092         ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
1093                 &Sensor::kFrameDurationRange[1], 1);
1094
1095         ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_SENSITIVITY_RANGE,
1096                 Sensor::kSensitivityRange,
1097                 sizeof(Sensor::kSensitivityRange)
1098                 /sizeof(int32_t));
1099
1100         ADD_STATIC_ENTRY(ANDROID_SENSOR_MAX_ANALOG_SENSITIVITY,
1101                 &Sensor::kSensitivityRange[1], 1);
1102     }
1103
1104     static const float sensorPhysicalSize[2] = {3.20f, 2.40f}; // mm
1105     ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
1106             sensorPhysicalSize, 2);
1107
1108     ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
1109             (int32_t*)Sensor::kResolution, 2);
1110
1111     ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
1112             (int32_t*)Sensor::kActiveArray, 4);
1113
1114     static const int32_t orientation = 90; // Aligned with 'long edge'
1115     ADD_STATIC_ENTRY(ANDROID_SENSOR_ORIENTATION, &orientation, 1);
1116
1117     static const uint8_t timestampSource = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME;
1118     ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE, &timestampSource, 1);
1119
1120     if (hasCapability(RAW)) {
1121         ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
1122                 &Sensor::kColorFilterArrangement, 1);
1123
1124         ADD_STATIC_ENTRY(ANDROID_SENSOR_INFO_WHITE_LEVEL,
1125                 (int32_t*)&Sensor::kMaxRawValue, 1);
1126
1127         static const int32_t blackLevelPattern[4] = {
1128             (int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel,
1129             (int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel
1130         };
1131         ADD_STATIC_ENTRY(ANDROID_SENSOR_BLACK_LEVEL_PATTERN,
1132                 blackLevelPattern, sizeof(blackLevelPattern)/sizeof(int32_t));
1133     }
1134
1135     if (hasCapability(BACKWARD_COMPATIBLE)) {
1136         static const int32_t availableTestPatternModes[] = {
1137             ANDROID_SENSOR_TEST_PATTERN_MODE_OFF
1138         };
1139         ADD_STATIC_ENTRY(ANDROID_SENSOR_AVAILABLE_TEST_PATTERN_MODES,
1140                 availableTestPatternModes, sizeof(availableTestPatternModes)/sizeof(int32_t));
1141     }
1142
1143     // android.lens
1144
1145     static const float focalLength = 3.30f; // mm
1146     ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
1147             &focalLength, 1);
1148
1149     if (hasCapability(BACKWARD_COMPATIBLE)) {
1150         // 5 cm min focus distance for back camera, infinity (fixed focus) for front
1151         const float minFocusDistance = mFacingBack ? 1.0/0.05 : 0.0;
1152         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
1153                 &minFocusDistance, 1);
1154
1155         // 5 m hyperfocal distance for back camera, infinity (fixed focus) for front
1156         const float hyperFocalDistance = mFacingBack ? 1.0/5.0 : 0.0;
1157         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
1158                 &minFocusDistance, 1);
1159
1160         static const float aperture = 2.8f;
1161         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
1162                 &aperture, 1);
1163         static const float filterDensity = 0;
1164         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_FILTER_DENSITIES,
1165                 &filterDensity, 1);
1166         static const uint8_t availableOpticalStabilization =
1167                 ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
1168         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
1169                 &availableOpticalStabilization, 1);
1170
1171         static const int32_t lensShadingMapSize[] = {1, 1};
1172         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_SHADING_MAP_SIZE, lensShadingMapSize,
1173                 sizeof(lensShadingMapSize)/sizeof(int32_t));
1174
1175         static const uint8_t lensFocusCalibration =
1176                 ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION_APPROXIMATE;
1177         ADD_STATIC_ENTRY(ANDROID_LENS_INFO_FOCUS_DISTANCE_CALIBRATION, &lensFocusCalibration, 1);
1178     }
1179
1180     if (hasCapability(DEPTH_OUTPUT)) {
1181         // These could be included for non-DEPTH capability as well, but making this variable for
1182         // testing coverage
1183
1184         // 90 degree rotation to align with long edge of a phone device that's by default portrait
1185         static const float qO[] = { 0.707107f, 0.f, 0.f, 0.707107f};
1186
1187         // Either a 180-degree rotation for back-facing, or no rotation for front-facing
1188         const float qF[] = {0, (mFacingBack ? 1.f : 0.f), 0, (mFacingBack ? 0.f : 1.f)};
1189
1190         // Quarternion product, orientation change then facing
1191         const float lensPoseRotation[] = {qO[0]*qF[0] - qO[1]*qF[1] - qO[2]*qF[2] - qO[3]*qF[3],
1192                                           qO[0]*qF[1] + qO[1]*qF[0] + qO[2]*qF[3] - qO[3]*qF[2],
1193                                           qO[0]*qF[2] + qO[2]*qF[0] + qO[1]*qF[3] - qO[3]*qF[1],
1194                                           qO[0]*qF[3] + qO[3]*qF[0] + qO[1]*qF[2] - qO[2]*qF[1]};
1195
1196         ADD_STATIC_ENTRY(ANDROID_LENS_POSE_ROTATION, lensPoseRotation,
1197                 sizeof(lensPoseRotation)/sizeof(float));
1198
1199         // Only one camera facing each way, so 0 translation needed to the center of the 'main'
1200         // camera
1201         static const float lensPoseTranslation[] = {0.f, 0.f, 0.f};
1202
1203         ADD_STATIC_ENTRY(ANDROID_LENS_POSE_TRANSLATION, lensPoseTranslation,
1204                 sizeof(lensPoseTranslation)/sizeof(float));
1205
1206         // Intrinsics are 'ideal' (f_x, f_y, c_x, c_y, s) match focal length and active array size
1207         float f_x = focalLength * Sensor::kActiveArray[2] / sensorPhysicalSize[0];
1208         float f_y = focalLength * Sensor::kActiveArray[3] / sensorPhysicalSize[1];
1209         float c_x = Sensor::kActiveArray[2] / 2.f;
1210         float c_y = Sensor::kActiveArray[3] / 2.f;
1211         float s = 0.f;
1212         const float lensIntrinsics[] = { f_x, f_y, c_x, c_y, s };
1213
1214         ADD_STATIC_ENTRY(ANDROID_LENS_INTRINSIC_CALIBRATION, lensIntrinsics,
1215                 sizeof(lensIntrinsics)/sizeof(float));
1216
1217         // No radial or tangential distortion
1218
1219         float lensRadialDistortion[] = {1.0f, 0.f, 0.f, 0.f, 0.f, 0.f};
1220
1221         ADD_STATIC_ENTRY(ANDROID_LENS_RADIAL_DISTORTION, lensRadialDistortion,
1222                 sizeof(lensRadialDistortion)/sizeof(float));
1223
1224     }
1225
1226
1227     static const uint8_t lensFacing = mFacingBack ?
1228             ANDROID_LENS_FACING_BACK : ANDROID_LENS_FACING_FRONT;
1229     ADD_STATIC_ENTRY(ANDROID_LENS_FACING, &lensFacing, 1);
1230
1231     // android.flash
1232
1233     static const uint8_t flashAvailable = 0;
1234     ADD_STATIC_ENTRY(ANDROID_FLASH_INFO_AVAILABLE, &flashAvailable, 1);
1235
1236     // android.tonemap
1237
1238     if (hasCapability(MANUAL_POST_PROCESSING)) {
1239         static const int32_t tonemapCurvePoints = 128;
1240         ADD_STATIC_ENTRY(ANDROID_TONEMAP_MAX_CURVE_POINTS, &tonemapCurvePoints, 1);
1241
1242         static const uint8_t availableToneMapModes[] = {
1243             ANDROID_TONEMAP_MODE_CONTRAST_CURVE,  ANDROID_TONEMAP_MODE_FAST,
1244             ANDROID_TONEMAP_MODE_HIGH_QUALITY
1245         };
1246         ADD_STATIC_ENTRY(ANDROID_TONEMAP_AVAILABLE_TONE_MAP_MODES, availableToneMapModes,
1247                 sizeof(availableToneMapModes));
1248     }
1249
1250     // android.scaler
1251
1252     const std::vector<int32_t> availableStreamConfigurationsBasic = {
1253         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
1254         HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
1255         HAL_PIXEL_FORMAT_RGBA_8888, 320, 240, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
1256         HAL_PIXEL_FORMAT_BLOB, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT
1257     };
1258     const std::vector<int32_t> availableStreamConfigurationsRaw = {
1259         HAL_PIXEL_FORMAT_RAW16, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT
1260     };
1261     const std::vector<int32_t> availableStreamConfigurationsBurst = {
1262         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
1263         HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT,
1264         HAL_PIXEL_FORMAT_RGBA_8888, 640, 480, ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT
1265     };
1266
1267     std::vector<int32_t> availableStreamConfigurations;
1268
1269     if (hasCapability(BACKWARD_COMPATIBLE)) {
1270         availableStreamConfigurations.insert(availableStreamConfigurations.end(),
1271                 availableStreamConfigurationsBasic.begin(),
1272                 availableStreamConfigurationsBasic.end());
1273     }
1274     if (hasCapability(RAW)) {
1275         availableStreamConfigurations.insert(availableStreamConfigurations.end(),
1276                 availableStreamConfigurationsRaw.begin(),
1277                 availableStreamConfigurationsRaw.end());
1278     }
1279     if (hasCapability(BURST_CAPTURE)) {
1280         availableStreamConfigurations.insert(availableStreamConfigurations.end(),
1281                 availableStreamConfigurationsBurst.begin(),
1282                 availableStreamConfigurationsBurst.end());
1283     }
1284
1285     if (availableStreamConfigurations.size() > 0) {
1286         ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS,
1287                 &availableStreamConfigurations[0],
1288                 availableStreamConfigurations.size());
1289     }
1290
1291     const std::vector<int64_t> availableMinFrameDurationsBasic = {
1292         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, Sensor::kFrameDurationRange[0],
1293         HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, Sensor::kFrameDurationRange[0],
1294         HAL_PIXEL_FORMAT_RGBA_8888, 320, 240, Sensor::kFrameDurationRange[0],
1295         HAL_PIXEL_FORMAT_BLOB, 640, 480, Sensor::kFrameDurationRange[0]
1296     };
1297     const std::vector<int64_t> availableMinFrameDurationsRaw = {
1298         HAL_PIXEL_FORMAT_RAW16, 640, 480, Sensor::kFrameDurationRange[0]
1299     };
1300     const std::vector<int64_t> availableMinFrameDurationsBurst = {
1301         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, Sensor::kFrameDurationRange[0],
1302         HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, Sensor::kFrameDurationRange[0],
1303         HAL_PIXEL_FORMAT_RGBA_8888, 640, 480, Sensor::kFrameDurationRange[0],
1304     };
1305
1306     std::vector<int64_t> availableMinFrameDurations;
1307
1308     if (hasCapability(BACKWARD_COMPATIBLE)) {
1309         availableMinFrameDurations.insert(availableMinFrameDurations.end(),
1310                 availableMinFrameDurationsBasic.begin(),
1311                 availableMinFrameDurationsBasic.end());
1312     }
1313     if (hasCapability(RAW)) {
1314         availableMinFrameDurations.insert(availableMinFrameDurations.end(),
1315                 availableMinFrameDurationsRaw.begin(),
1316                 availableMinFrameDurationsRaw.end());
1317     }
1318     if (hasCapability(BURST_CAPTURE)) {
1319         availableMinFrameDurations.insert(availableMinFrameDurations.end(),
1320                 availableMinFrameDurationsBurst.begin(),
1321                 availableMinFrameDurationsBurst.end());
1322     }
1323
1324     if (availableMinFrameDurations.size() > 0) {
1325         ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_MIN_FRAME_DURATIONS,
1326                 &availableMinFrameDurations[0],
1327                 availableMinFrameDurations.size());
1328     }
1329
1330     const std::vector<int64_t> availableStallDurationsBasic = {
1331         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 320, 240, 0,
1332         HAL_PIXEL_FORMAT_YCbCr_420_888, 320, 240, 0,
1333         HAL_PIXEL_FORMAT_RGBA_8888, 320, 240, 0,
1334         HAL_PIXEL_FORMAT_BLOB, 640, 480, Sensor::kFrameDurationRange[0]
1335     };
1336     const std::vector<int64_t> availableStallDurationsRaw = {
1337         HAL_PIXEL_FORMAT_RAW16, 640, 480, Sensor::kFrameDurationRange[0]
1338     };
1339     const std::vector<int64_t> availableStallDurationsBurst = {
1340         HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, 640, 480, 0,
1341         HAL_PIXEL_FORMAT_YCbCr_420_888, 640, 480, 0,
1342         HAL_PIXEL_FORMAT_RGBA_8888, 640, 480, 0
1343     };
1344
1345     std::vector<int64_t> availableStallDurations;
1346
1347     if (hasCapability(BACKWARD_COMPATIBLE)) {
1348         availableStallDurations.insert(availableStallDurations.end(),
1349                 availableStallDurationsBasic.begin(),
1350                 availableStallDurationsBasic.end());
1351     }
1352     if (hasCapability(RAW)) {
1353         availableStallDurations.insert(availableStallDurations.end(),
1354                 availableStallDurationsRaw.begin(),
1355                 availableStallDurationsRaw.end());
1356     }
1357     if (hasCapability(BURST_CAPTURE)) {
1358         availableStallDurations.insert(availableStallDurations.end(),
1359                 availableStallDurationsBurst.begin(),
1360                 availableStallDurationsBurst.end());
1361     }
1362
1363     if (availableStallDurations.size() > 0) {
1364         ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_STALL_DURATIONS,
1365                 &availableStallDurations[0],
1366                 availableStallDurations.size());
1367     }
1368
1369     if (hasCapability(BACKWARD_COMPATIBLE)) {
1370         static const uint8_t croppingType = ANDROID_SCALER_CROPPING_TYPE_FREEFORM;
1371         ADD_STATIC_ENTRY(ANDROID_SCALER_CROPPING_TYPE,
1372                 &croppingType, 1);
1373
1374         static const float maxZoom = 10;
1375         ADD_STATIC_ENTRY(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
1376                 &maxZoom, 1);
1377     }
1378
1379     // android.jpeg
1380
1381     if (hasCapability(BACKWARD_COMPATIBLE)) {
1382         static const int32_t jpegThumbnailSizes[] = {
1383             0, 0,
1384             160, 120,
1385             320, 240
1386         };
1387         ADD_STATIC_ENTRY(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
1388                 jpegThumbnailSizes, sizeof(jpegThumbnailSizes)/sizeof(int32_t));
1389
1390         static const int32_t jpegMaxSize = JpegCompressor::kMaxJpegSize;
1391         ADD_STATIC_ENTRY(ANDROID_JPEG_MAX_SIZE, &jpegMaxSize, 1);
1392     }
1393
1394     // android.stats
1395
1396     if (hasCapability(BACKWARD_COMPATIBLE)) {
1397         static const uint8_t availableFaceDetectModes[] = {
1398             ANDROID_STATISTICS_FACE_DETECT_MODE_OFF,
1399             ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE,
1400             ANDROID_STATISTICS_FACE_DETECT_MODE_FULL
1401         };
1402         ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
1403                 availableFaceDetectModes,
1404                 sizeof(availableFaceDetectModes));
1405
1406         static const int32_t maxFaceCount = 8;
1407         ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
1408                 &maxFaceCount, 1);
1409
1410
1411         static const uint8_t availableShadingMapModes[] = {
1412             ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF
1413         };
1414         ADD_STATIC_ENTRY(ANDROID_STATISTICS_INFO_AVAILABLE_LENS_SHADING_MAP_MODES,
1415                 availableShadingMapModes, sizeof(availableShadingMapModes));
1416     }
1417
1418     // android.sync
1419
1420     static const int32_t maxLatency =
1421             hasCapability(FULL_LEVEL) ? ANDROID_SYNC_MAX_LATENCY_PER_FRAME_CONTROL : 3;
1422     ADD_STATIC_ENTRY(ANDROID_SYNC_MAX_LATENCY, &maxLatency, 1);
1423
1424     // android.control
1425
1426     if (hasCapability(BACKWARD_COMPATIBLE)) {
1427         static const uint8_t availableControlModes[] = {
1428             ANDROID_CONTROL_MODE_OFF, ANDROID_CONTROL_MODE_AUTO, ANDROID_CONTROL_MODE_USE_SCENE_MODE
1429         };
1430         ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_MODES,
1431                 availableControlModes, sizeof(availableControlModes));
1432     } else {
1433         static const uint8_t availableControlModes[] = {
1434             ANDROID_CONTROL_MODE_AUTO
1435         };
1436         ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_MODES,
1437                 availableControlModes, sizeof(availableControlModes));
1438     }
1439
1440     static const uint8_t availableSceneModes[] = {
1441         hasCapability(BACKWARD_COMPATIBLE) ?
1442             ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY :
1443             ANDROID_CONTROL_SCENE_MODE_DISABLED
1444     };
1445     ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
1446             availableSceneModes, sizeof(availableSceneModes));
1447
1448     if (hasCapability(BACKWARD_COMPATIBLE)) {
1449         static const uint8_t availableEffects[] = {
1450             ANDROID_CONTROL_EFFECT_MODE_OFF
1451         };
1452         ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_EFFECTS,
1453                 availableEffects, sizeof(availableEffects));
1454     }
1455
1456     if (hasCapability(BACKWARD_COMPATIBLE)) {
1457         static const int32_t max3aRegions[] = {/*AE*/ 1,/*AWB*/ 0,/*AF*/ 1};
1458         ADD_STATIC_ENTRY(ANDROID_CONTROL_MAX_REGIONS,
1459                 max3aRegions, sizeof(max3aRegions)/sizeof(max3aRegions[0]));
1460
1461         static const uint8_t availableAeModes[] = {
1462             ANDROID_CONTROL_AE_MODE_OFF,
1463             ANDROID_CONTROL_AE_MODE_ON
1464         };
1465         ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_MODES,
1466                 availableAeModes, sizeof(availableAeModes));
1467
1468         static const camera_metadata_rational exposureCompensationStep = {
1469             1, 3
1470         };
1471         ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_COMPENSATION_STEP,
1472                 &exposureCompensationStep, 1);
1473
1474         int32_t exposureCompensationRange[] = {-9, 9};
1475         ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
1476                 exposureCompensationRange,
1477                 sizeof(exposureCompensationRange)/sizeof(int32_t));
1478     }
1479
1480     static const int32_t availableTargetFpsRanges[] = {
1481             5, 30, 15, 30, 15, 15, 30, 30
1482     };
1483     ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
1484             availableTargetFpsRanges,
1485             sizeof(availableTargetFpsRanges)/sizeof(int32_t));
1486
1487     if (hasCapability(BACKWARD_COMPATIBLE)) {
1488         static const uint8_t availableAntibandingModes[] = {
1489             ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
1490             ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO
1491         };
1492         ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
1493                 availableAntibandingModes, sizeof(availableAntibandingModes));
1494     }
1495
1496     static const uint8_t aeLockAvailable = hasCapability(BACKWARD_COMPATIBLE) ?
1497             ANDROID_CONTROL_AE_LOCK_AVAILABLE_TRUE : ANDROID_CONTROL_AE_LOCK_AVAILABLE_FALSE;
1498
1499     ADD_STATIC_ENTRY(ANDROID_CONTROL_AE_LOCK_AVAILABLE,
1500             &aeLockAvailable, 1);
1501
1502     if (hasCapability(BACKWARD_COMPATIBLE)) {
1503         static const uint8_t availableAwbModes[] = {
1504             ANDROID_CONTROL_AWB_MODE_OFF,
1505             ANDROID_CONTROL_AWB_MODE_AUTO,
1506             ANDROID_CONTROL_AWB_MODE_INCANDESCENT,
1507             ANDROID_CONTROL_AWB_MODE_FLUORESCENT,
1508             ANDROID_CONTROL_AWB_MODE_DAYLIGHT,
1509             ANDROID_CONTROL_AWB_MODE_SHADE
1510         };
1511         ADD_STATIC_ENTRY(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
1512                 availableAwbModes, sizeof(availableAwbModes));
1513     }
1514
1515     static const uint8_t awbLockAvailable = hasCapability(BACKWARD_COMPATIBLE) ?
1516             ANDROID_CONTROL_AWB_LOCK_AVAILABLE_TRUE : ANDROID_CONTROL_AWB_LOCK_AVAILABLE_FALSE;
1517
1518     ADD_STATIC_ENTRY(ANDROID_CONTROL_AWB_LOCK_AVAILABLE,
1519             &awbLockAvailable, 1);
1520
1521     static const uint8_t availableAfModesBack[] = {
1522             ANDROID_CONTROL_AF_MODE_OFF,
1523             ANDROID_CONTROL_AF_MODE_AUTO,
1524             ANDROID_CONTROL_AF_MODE_MACRO,
1525             ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO,
1526             ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE
1527     };
1528
1529     static const uint8_t availableAfModesFront[] = {
1530             ANDROID_CONTROL_AF_MODE_OFF
1531     };
1532
1533     if (mFacingBack && hasCapability(BACKWARD_COMPATIBLE)) {
1534         ADD_STATIC_ENTRY(ANDROID_CONTROL_AF_AVAILABLE_MODES,
1535                 availableAfModesBack, sizeof(availableAfModesBack));
1536     } else {
1537         ADD_STATIC_ENTRY(ANDROID_CONTROL_AF_AVAILABLE_MODES,
1538                 availableAfModesFront, sizeof(availableAfModesFront));
1539     }
1540
1541     static const uint8_t availableVstabModes[] = {
1542         ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF
1543     };
1544     ADD_STATIC_ENTRY(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
1545             availableVstabModes, sizeof(availableVstabModes));
1546
1547     // android.colorCorrection
1548
1549     if (hasCapability(BACKWARD_COMPATIBLE)) {
1550         static const uint8_t availableAberrationModes[] = {
1551             ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
1552             ANDROID_COLOR_CORRECTION_ABERRATION_MODE_FAST,
1553             ANDROID_COLOR_CORRECTION_ABERRATION_MODE_HIGH_QUALITY
1554         };
1555         ADD_STATIC_ENTRY(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
1556                 availableAberrationModes, sizeof(availableAberrationModes));
1557     } else {
1558         static const uint8_t availableAberrationModes[] = {
1559             ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF,
1560         };
1561         ADD_STATIC_ENTRY(ANDROID_COLOR_CORRECTION_AVAILABLE_ABERRATION_MODES,
1562                 availableAberrationModes, sizeof(availableAberrationModes));
1563     }
1564     // android.edge
1565
1566     if (hasCapability(BACKWARD_COMPATIBLE)) {
1567         static const uint8_t availableEdgeModes[] = {
1568             ANDROID_EDGE_MODE_OFF, ANDROID_EDGE_MODE_FAST, ANDROID_EDGE_MODE_HIGH_QUALITY
1569         };
1570         ADD_STATIC_ENTRY(ANDROID_EDGE_AVAILABLE_EDGE_MODES,
1571                 availableEdgeModes, sizeof(availableEdgeModes));
1572     } else {
1573         static const uint8_t availableEdgeModes[] = {
1574             ANDROID_EDGE_MODE_OFF
1575         };
1576         ADD_STATIC_ENTRY(ANDROID_EDGE_AVAILABLE_EDGE_MODES,
1577                 availableEdgeModes, sizeof(availableEdgeModes));
1578     }
1579
1580     // android.info
1581
1582     static const uint8_t supportedHardwareLevel =
1583             hasCapability(FULL_LEVEL) ? ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_FULL :
1584                     ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL_LIMITED;
1585     ADD_STATIC_ENTRY(ANDROID_INFO_SUPPORTED_HARDWARE_LEVEL,
1586                 &supportedHardwareLevel,
1587                 /*count*/1);
1588
1589     // android.noiseReduction
1590
1591     if (hasCapability(BACKWARD_COMPATIBLE)) {
1592         static const uint8_t availableNoiseReductionModes[] = {
1593             ANDROID_NOISE_REDUCTION_MODE_OFF,
1594             ANDROID_NOISE_REDUCTION_MODE_FAST,
1595             ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY
1596         };
1597         ADD_STATIC_ENTRY(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
1598                 availableNoiseReductionModes, sizeof(availableNoiseReductionModes));
1599     } else {
1600         static const uint8_t availableNoiseReductionModes[] = {
1601             ANDROID_NOISE_REDUCTION_MODE_OFF,
1602         };
1603         ADD_STATIC_ENTRY(ANDROID_NOISE_REDUCTION_AVAILABLE_NOISE_REDUCTION_MODES,
1604                 availableNoiseReductionModes, sizeof(availableNoiseReductionModes));
1605     }
1606
1607     // android.depth
1608
1609     if (hasCapability(DEPTH_OUTPUT)) {
1610
1611         static const int32_t maxDepthSamples = 100;
1612         ADD_STATIC_ENTRY(ANDROID_DEPTH_MAX_DEPTH_SAMPLES,
1613                 &maxDepthSamples, 1);
1614
1615         static const int32_t availableDepthStreamConfigurations[] = {
1616             HAL_PIXEL_FORMAT_Y16, 160, 120, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT,
1617             HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS_OUTPUT
1618         };
1619         ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS,
1620                 availableDepthStreamConfigurations,
1621                 sizeof(availableDepthStreamConfigurations)/sizeof(int32_t));
1622
1623         static const int64_t availableDepthMinFrameDurations[] = {
1624             HAL_PIXEL_FORMAT_Y16, 160, 120, Sensor::kFrameDurationRange[0],
1625             HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, Sensor::kFrameDurationRange[0]
1626         };
1627         ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_MIN_FRAME_DURATIONS,
1628                 availableDepthMinFrameDurations,
1629                 sizeof(availableDepthMinFrameDurations)/sizeof(int64_t));
1630
1631         static const int64_t availableDepthStallDurations[] = {
1632             HAL_PIXEL_FORMAT_Y16, 160, 120, Sensor::kFrameDurationRange[0],
1633             HAL_PIXEL_FORMAT_BLOB, maxDepthSamples,1, Sensor::kFrameDurationRange[0]
1634         };
1635         ADD_STATIC_ENTRY(ANDROID_DEPTH_AVAILABLE_DEPTH_STALL_DURATIONS,
1636                 availableDepthStallDurations,
1637                 sizeof(availableDepthStallDurations)/sizeof(int64_t));
1638
1639         uint8_t depthIsExclusive = ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE_FALSE;
1640         ADD_STATIC_ENTRY(ANDROID_DEPTH_DEPTH_IS_EXCLUSIVE,
1641                 &depthIsExclusive, 1);
1642     }
1643
1644     // android.shading
1645
1646     if (hasCapability(BACKWARD_COMPATIBLE)) {
1647         static const uint8_t availableShadingModes[] = {
1648             ANDROID_SHADING_MODE_OFF, ANDROID_SHADING_MODE_FAST, ANDROID_SHADING_MODE_HIGH_QUALITY
1649         };
1650         ADD_STATIC_ENTRY(ANDROID_SHADING_AVAILABLE_MODES, availableShadingModes,
1651                 sizeof(availableShadingModes));
1652     } else {
1653         static const uint8_t availableShadingModes[] = {
1654             ANDROID_SHADING_MODE_OFF
1655         };
1656         ADD_STATIC_ENTRY(ANDROID_SHADING_AVAILABLE_MODES, availableShadingModes,
1657                 sizeof(availableShadingModes));
1658     }
1659
1660     // android.request
1661
1662     static const int32_t maxNumOutputStreams[] = {
1663             kMaxRawStreamCount, kMaxProcessedStreamCount, kMaxJpegStreamCount
1664     };
1665     ADD_STATIC_ENTRY(ANDROID_REQUEST_MAX_NUM_OUTPUT_STREAMS, maxNumOutputStreams, 3);
1666
1667     static const uint8_t maxPipelineDepth = kMaxBufferCount;
1668     ADD_STATIC_ENTRY(ANDROID_REQUEST_PIPELINE_MAX_DEPTH, &maxPipelineDepth, 1);
1669
1670     static const int32_t partialResultCount = 1;
1671     ADD_STATIC_ENTRY(ANDROID_REQUEST_PARTIAL_RESULT_COUNT,
1672             &partialResultCount, /*count*/1);
1673
1674     SortedVector<uint8_t> caps;
1675     for (size_t i = 0; i < mCapabilities.size(); i++) {
1676         switch(mCapabilities[i]) {
1677             case BACKWARD_COMPATIBLE:
1678                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE);
1679                 break;
1680             case MANUAL_SENSOR:
1681                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_SENSOR);
1682                 break;
1683             case MANUAL_POST_PROCESSING:
1684                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_MANUAL_POST_PROCESSING);
1685                 break;
1686             case RAW:
1687                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_RAW);
1688                 break;
1689             case PRIVATE_REPROCESSING:
1690                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_PRIVATE_REPROCESSING);
1691                 break;
1692             case READ_SENSOR_SETTINGS:
1693                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_READ_SENSOR_SETTINGS);
1694                 break;
1695             case BURST_CAPTURE:
1696                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_BURST_CAPTURE);
1697                 break;
1698             case YUV_REPROCESSING:
1699                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_YUV_REPROCESSING);
1700                 break;
1701             case DEPTH_OUTPUT:
1702                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DEPTH_OUTPUT);
1703                 break;
1704             case CONSTRAINED_HIGH_SPEED_VIDEO:
1705                 caps.add(ANDROID_REQUEST_AVAILABLE_CAPABILITIES_CONSTRAINED_HIGH_SPEED_VIDEO);
1706                 break;
1707             default:
1708                 // Ignore LEVELs
1709                 break;
1710         }
1711     }
1712     ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_CAPABILITIES, caps.array(), caps.size());
1713
1714     // Scan a default request template for included request keys
1715     Vector<int32_t> availableRequestKeys;
1716     const camera_metadata_t *previewRequest =
1717         constructDefaultRequestSettings(CAMERA3_TEMPLATE_PREVIEW);
1718     for (size_t i = 0; i < get_camera_metadata_entry_count(previewRequest); i++) {
1719         camera_metadata_ro_entry_t entry;
1720         get_camera_metadata_ro_entry(previewRequest, i, &entry);
1721         availableRequestKeys.add(entry.tag);
1722     }
1723     ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_REQUEST_KEYS, availableRequestKeys.array(),
1724             availableRequestKeys.size());
1725
1726     // Add a few more result keys. Must be kept up to date with the various places that add these
1727
1728     Vector<int32_t> availableResultKeys(availableRequestKeys);
1729     if (hasCapability(BACKWARD_COMPATIBLE)) {
1730         availableResultKeys.add(ANDROID_CONTROL_AE_STATE);
1731         availableResultKeys.add(ANDROID_CONTROL_AF_STATE);
1732         availableResultKeys.add(ANDROID_CONTROL_AWB_STATE);
1733         availableResultKeys.add(ANDROID_FLASH_STATE);
1734         availableResultKeys.add(ANDROID_LENS_STATE);
1735         availableResultKeys.add(ANDROID_LENS_FOCUS_RANGE);
1736         availableResultKeys.add(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW);
1737         availableResultKeys.add(ANDROID_STATISTICS_SCENE_FLICKER);
1738     }
1739
1740     if (hasCapability(DEPTH_OUTPUT)) {
1741         availableResultKeys.add(ANDROID_LENS_POSE_ROTATION);
1742         availableResultKeys.add(ANDROID_LENS_POSE_TRANSLATION);
1743         availableResultKeys.add(ANDROID_LENS_INTRINSIC_CALIBRATION);
1744         availableResultKeys.add(ANDROID_LENS_RADIAL_DISTORTION);
1745     }
1746
1747     availableResultKeys.add(ANDROID_REQUEST_PIPELINE_DEPTH);
1748     availableResultKeys.add(ANDROID_SENSOR_TIMESTAMP);
1749
1750     ADD_STATIC_ENTRY(ANDROID_REQUEST_AVAILABLE_RESULT_KEYS, availableResultKeys.array(),
1751             availableResultKeys.size());
1752
1753     // Needs to be last, to collect all the keys set
1754
1755     availableCharacteristicsKeys.add(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS);
1756     info.update(ANDROID_REQUEST_AVAILABLE_CHARACTERISTICS_KEYS,
1757             availableCharacteristicsKeys);
1758
1759     mCameraInfo = info.release();
1760
1761 #undef ADD_STATIC_ENTRY
1762     return OK;
1763 }
1764
1765 status_t EmulatedFakeCamera3::process3A(CameraMetadata &settings) {
1766     /**
1767      * Extract top-level 3A controls
1768      */
1769     status_t res;
1770
1771     bool facePriority = false;
1772
1773     camera_metadata_entry e;
1774
1775     e = settings.find(ANDROID_CONTROL_MODE);
1776     if (e.count == 0) {
1777         ALOGE("%s: No control mode entry!", __FUNCTION__);
1778         return BAD_VALUE;
1779     }
1780     uint8_t controlMode = e.data.u8[0];
1781
1782     if (controlMode == ANDROID_CONTROL_MODE_OFF) {
1783         mAeState  = ANDROID_CONTROL_AE_STATE_INACTIVE;
1784         mAfState  = ANDROID_CONTROL_AF_STATE_INACTIVE;
1785         mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
1786         update3A(settings);
1787         return OK;
1788     } else if (controlMode == ANDROID_CONTROL_MODE_USE_SCENE_MODE) {
1789         if (!hasCapability(BACKWARD_COMPATIBLE)) {
1790             ALOGE("%s: Can't use scene mode when BACKWARD_COMPATIBLE not supported!",
1791                   __FUNCTION__);
1792             return BAD_VALUE;
1793         }
1794
1795         e = settings.find(ANDROID_CONTROL_SCENE_MODE);
1796         if (e.count == 0) {
1797             ALOGE("%s: No scene mode entry!", __FUNCTION__);
1798             return BAD_VALUE;
1799         }
1800         uint8_t sceneMode = e.data.u8[0];
1801
1802         switch(sceneMode) {
1803             case ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY:
1804                 mFacePriority = true;
1805                 break;
1806             default:
1807                 ALOGE("%s: Emulator doesn't support scene mode %d",
1808                         __FUNCTION__, sceneMode);
1809                 return BAD_VALUE;
1810         }
1811     } else {
1812         mFacePriority = false;
1813     }
1814
1815     // controlMode == AUTO or sceneMode = FACE_PRIORITY
1816     // Process individual 3A controls
1817
1818     res = doFakeAE(settings);
1819     if (res != OK) return res;
1820
1821     res = doFakeAF(settings);
1822     if (res != OK) return res;
1823
1824     res = doFakeAWB(settings);
1825     if (res != OK) return res;
1826
1827     update3A(settings);
1828     return OK;
1829 }
1830
1831 status_t EmulatedFakeCamera3::doFakeAE(CameraMetadata &settings) {
1832     camera_metadata_entry e;
1833
1834     e = settings.find(ANDROID_CONTROL_AE_MODE);
1835     if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
1836         ALOGE("%s: No AE mode entry!", __FUNCTION__);
1837         return BAD_VALUE;
1838     }
1839     uint8_t aeMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AE_MODE_ON;
1840
1841     switch (aeMode) {
1842         case ANDROID_CONTROL_AE_MODE_OFF:
1843             // AE is OFF
1844             mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
1845             return OK;
1846         case ANDROID_CONTROL_AE_MODE_ON:
1847             // OK for AUTO modes
1848             break;
1849         default:
1850             // Mostly silently ignore unsupported modes
1851             ALOGV("%s: Emulator doesn't support AE mode %d, assuming ON",
1852                     __FUNCTION__, aeMode);
1853             break;
1854     }
1855
1856     e = settings.find(ANDROID_CONTROL_AE_LOCK);
1857     bool aeLocked = (e.count > 0) ? (e.data.u8[0] == ANDROID_CONTROL_AE_LOCK_ON) : false;
1858
1859     e = settings.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER);
1860     bool precaptureTrigger = false;
1861     if (e.count != 0) {
1862         precaptureTrigger =
1863                 (e.data.u8[0] == ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START);
1864     }
1865
1866     if (precaptureTrigger) {
1867         ALOGV("%s: Pre capture trigger = %d", __FUNCTION__, precaptureTrigger);
1868     } else if (e.count > 0) {
1869         ALOGV("%s: Pre capture trigger was present? %zu",
1870               __FUNCTION__,
1871               e.count);
1872     }
1873
1874     if (precaptureTrigger || mAeState == ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
1875         // Run precapture sequence
1876         if (mAeState != ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
1877             mAeCounter = 0;
1878         }
1879
1880         if (mFacePriority) {
1881             mAeTargetExposureTime = kFacePriorityExposureTime;
1882         } else {
1883             mAeTargetExposureTime = kNormalExposureTime;
1884         }
1885
1886         if (mAeCounter > kPrecaptureMinFrames &&
1887                 (mAeTargetExposureTime - mAeCurrentExposureTime) <
1888                 mAeTargetExposureTime / 10) {
1889             // Done with precapture
1890             mAeCounter = 0;
1891             mAeState = aeLocked ? ANDROID_CONTROL_AE_STATE_LOCKED :
1892                     ANDROID_CONTROL_AE_STATE_CONVERGED;
1893         } else {
1894             // Converge some more
1895             mAeCurrentExposureTime +=
1896                     (mAeTargetExposureTime - mAeCurrentExposureTime) *
1897                     kExposureTrackRate;
1898             mAeCounter++;
1899             mAeState = ANDROID_CONTROL_AE_STATE_PRECAPTURE;
1900         }
1901
1902     } else if (!aeLocked) {
1903         // Run standard occasional AE scan
1904         switch (mAeState) {
1905             case ANDROID_CONTROL_AE_STATE_CONVERGED:
1906             case ANDROID_CONTROL_AE_STATE_INACTIVE:
1907                 mAeCounter++;
1908                 if (mAeCounter > kStableAeMaxFrames) {
1909                     mAeTargetExposureTime =
1910                             mFacePriority ? kFacePriorityExposureTime :
1911                             kNormalExposureTime;
1912                     float exposureStep = ((double)rand() / RAND_MAX) *
1913                             (kExposureWanderMax - kExposureWanderMin) +
1914                             kExposureWanderMin;
1915                     mAeTargetExposureTime *= std::pow(2, exposureStep);
1916                     mAeState = ANDROID_CONTROL_AE_STATE_SEARCHING;
1917                 }
1918                 break;
1919             case ANDROID_CONTROL_AE_STATE_SEARCHING:
1920                 mAeCurrentExposureTime +=
1921                         (mAeTargetExposureTime - mAeCurrentExposureTime) *
1922                         kExposureTrackRate;
1923                 if (abs(mAeTargetExposureTime - mAeCurrentExposureTime) <
1924                         mAeTargetExposureTime / 10) {
1925                     // Close enough
1926                     mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
1927                     mAeCounter = 0;
1928                 }
1929                 break;
1930             case ANDROID_CONTROL_AE_STATE_LOCKED:
1931                 mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED;
1932                 mAeCounter = 0;
1933                 break;
1934             default:
1935                 ALOGE("%s: Emulator in unexpected AE state %d",
1936                         __FUNCTION__, mAeState);
1937                 return INVALID_OPERATION;
1938         }
1939     } else {
1940         // AE is locked
1941         mAeState = ANDROID_CONTROL_AE_STATE_LOCKED;
1942     }
1943
1944     return OK;
1945 }
1946
1947 status_t EmulatedFakeCamera3::doFakeAF(CameraMetadata &settings) {
1948     camera_metadata_entry e;
1949
1950     e = settings.find(ANDROID_CONTROL_AF_MODE);
1951     if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
1952         ALOGE("%s: No AF mode entry!", __FUNCTION__);
1953         return BAD_VALUE;
1954     }
1955     uint8_t afMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AF_MODE_OFF;
1956
1957     e = settings.find(ANDROID_CONTROL_AF_TRIGGER);
1958     typedef camera_metadata_enum_android_control_af_trigger af_trigger_t;
1959     af_trigger_t afTrigger;
1960     if (e.count != 0) {
1961         afTrigger = static_cast<af_trigger_t>(e.data.u8[0]);
1962
1963         ALOGV("%s: AF trigger set to 0x%x", __FUNCTION__, afTrigger);
1964         ALOGV("%s: AF mode is 0x%x", __FUNCTION__, afMode);
1965     } else {
1966         afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE;
1967     }
1968
1969     switch (afMode) {
1970         case ANDROID_CONTROL_AF_MODE_OFF:
1971             mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
1972             return OK;
1973         case ANDROID_CONTROL_AF_MODE_AUTO:
1974         case ANDROID_CONTROL_AF_MODE_MACRO:
1975         case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
1976         case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
1977             if (!mFacingBack) {
1978                 ALOGE("%s: Front camera doesn't support AF mode %d",
1979                         __FUNCTION__, afMode);
1980                 return BAD_VALUE;
1981             }
1982             // OK, handle transitions lower on
1983             break;
1984         default:
1985             ALOGE("%s: Emulator doesn't support AF mode %d",
1986                     __FUNCTION__, afMode);
1987             return BAD_VALUE;
1988     }
1989
1990     bool afModeChanged = mAfMode != afMode;
1991     mAfMode = afMode;
1992
1993     /**
1994      * Simulate AF triggers. Transition at most 1 state per frame.
1995      * - Focusing always succeeds (goes into locked, or PASSIVE_SCAN).
1996      */
1997
1998     bool afTriggerStart = false;
1999     bool afTriggerCancel = false;
2000     switch (afTrigger) {
2001         case ANDROID_CONTROL_AF_TRIGGER_IDLE:
2002             break;
2003         case ANDROID_CONTROL_AF_TRIGGER_START:
2004             afTriggerStart = true;
2005             break;
2006         case ANDROID_CONTROL_AF_TRIGGER_CANCEL:
2007             afTriggerCancel = true;
2008             // Cancel trigger always transitions into INACTIVE
2009             mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
2010
2011             ALOGV("%s: AF State transition to STATE_INACTIVE", __FUNCTION__);
2012
2013             // Stay in 'inactive' until at least next frame
2014             return OK;
2015         default:
2016             ALOGE("%s: Unknown af trigger value %d", __FUNCTION__, afTrigger);
2017             return BAD_VALUE;
2018     }
2019
2020     // If we get down here, we're either in an autofocus mode
2021     //  or in a continuous focus mode (and no other modes)
2022
2023     int oldAfState = mAfState;
2024     switch (mAfState) {
2025         case ANDROID_CONTROL_AF_STATE_INACTIVE:
2026             if (afTriggerStart) {
2027                 switch (afMode) {
2028                     case ANDROID_CONTROL_AF_MODE_AUTO:
2029                         // fall-through
2030                     case ANDROID_CONTROL_AF_MODE_MACRO:
2031                         mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
2032                         break;
2033                     case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
2034                         // fall-through
2035                     case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
2036                         mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
2037                         break;
2038                 }
2039             } else {
2040                 // At least one frame stays in INACTIVE
2041                 if (!afModeChanged) {
2042                     switch (afMode) {
2043                         case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
2044                             // fall-through
2045                         case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
2046                             mAfState = ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN;
2047                             break;
2048                     }
2049                 }
2050             }
2051             break;
2052         case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
2053             /**
2054              * When the AF trigger is activated, the algorithm should finish
2055              * its PASSIVE_SCAN if active, and then transition into AF_FOCUSED
2056              * or AF_NOT_FOCUSED as appropriate
2057              */
2058             if (afTriggerStart) {
2059                 // Randomly transition to focused or not focused
2060                 if (rand() % 3) {
2061                     mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
2062                 } else {
2063                     mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
2064                 }
2065             }
2066             /**
2067              * When the AF trigger is not involved, the AF algorithm should
2068              * start in INACTIVE state, and then transition into PASSIVE_SCAN
2069              * and PASSIVE_FOCUSED states
2070              */
2071             else if (!afTriggerCancel) {
2072                // Randomly transition to passive focus
2073                 if (rand() % 3 == 0) {
2074                     mAfState = ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED;
2075                 }
2076             }
2077
2078             break;
2079         case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
2080             if (afTriggerStart) {
2081                 // Randomly transition to focused or not focused
2082                 if (rand() % 3) {
2083                     mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
2084                 } else {
2085                     mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
2086                 }
2087             }
2088             // TODO: initiate passive scan (PASSIVE_SCAN)
2089             break;
2090         case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
2091             // Simulate AF sweep completing instantaneously
2092
2093             // Randomly transition to focused or not focused
2094             if (rand() % 3) {
2095                 mAfState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
2096             } else {
2097                 mAfState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
2098             }
2099             break;
2100         case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
2101             if (afTriggerStart) {
2102                 switch (afMode) {
2103                     case ANDROID_CONTROL_AF_MODE_AUTO:
2104                         // fall-through
2105                     case ANDROID_CONTROL_AF_MODE_MACRO:
2106                         mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
2107                         break;
2108                     case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
2109                         // fall-through
2110                     case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
2111                         // continuous autofocus => trigger start has no effect
2112                         break;
2113                 }
2114             }
2115             break;
2116         case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
2117             if (afTriggerStart) {
2118                 switch (afMode) {
2119                     case ANDROID_CONTROL_AF_MODE_AUTO:
2120                         // fall-through
2121                     case ANDROID_CONTROL_AF_MODE_MACRO:
2122                         mAfState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
2123                         break;
2124                     case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
2125                         // fall-through
2126                     case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
2127                         // continuous autofocus => trigger start has no effect
2128                         break;
2129                 }
2130             }
2131             break;
2132         default:
2133             ALOGE("%s: Bad af state %d", __FUNCTION__, mAfState);
2134     }
2135
2136     {
2137         char afStateString[100] = {0,};
2138         camera_metadata_enum_snprint(ANDROID_CONTROL_AF_STATE,
2139                 oldAfState,
2140                 afStateString,
2141                 sizeof(afStateString));
2142
2143         char afNewStateString[100] = {0,};
2144         camera_metadata_enum_snprint(ANDROID_CONTROL_AF_STATE,
2145                 mAfState,
2146                 afNewStateString,
2147                 sizeof(afNewStateString));
2148         ALOGVV("%s: AF state transitioned from %s to %s",
2149               __FUNCTION__, afStateString, afNewStateString);
2150     }
2151
2152
2153     return OK;
2154 }
2155
2156 status_t EmulatedFakeCamera3::doFakeAWB(CameraMetadata &settings) {
2157     camera_metadata_entry e;
2158
2159     e = settings.find(ANDROID_CONTROL_AWB_MODE);
2160     if (e.count == 0 && hasCapability(BACKWARD_COMPATIBLE)) {
2161         ALOGE("%s: No AWB mode entry!", __FUNCTION__);
2162         return BAD_VALUE;
2163     }
2164     uint8_t awbMode = (e.count > 0) ? e.data.u8[0] : (uint8_t)ANDROID_CONTROL_AWB_MODE_AUTO;
2165
2166     // TODO: Add white balance simulation
2167
2168     switch (awbMode) {
2169         case ANDROID_CONTROL_AWB_MODE_OFF:
2170             mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
2171             return OK;
2172         case ANDROID_CONTROL_AWB_MODE_AUTO:
2173         case ANDROID_CONTROL_AWB_MODE_INCANDESCENT:
2174         case ANDROID_CONTROL_AWB_MODE_FLUORESCENT:
2175         case ANDROID_CONTROL_AWB_MODE_DAYLIGHT:
2176         case ANDROID_CONTROL_AWB_MODE_SHADE:
2177             // OK
2178             break;
2179         default:
2180             ALOGE("%s: Emulator doesn't support AWB mode %d",
2181                     __FUNCTION__, awbMode);
2182             return BAD_VALUE;
2183     }
2184
2185     return OK;
2186 }
2187
2188
2189 void EmulatedFakeCamera3::update3A(CameraMetadata &settings) {
2190     if (mAeMode != ANDROID_CONTROL_AE_MODE_OFF) {
2191         settings.update(ANDROID_SENSOR_EXPOSURE_TIME,
2192                 &mAeCurrentExposureTime, 1);
2193         settings.update(ANDROID_SENSOR_SENSITIVITY,
2194                 &mAeCurrentSensitivity, 1);
2195     }
2196
2197     settings.update(ANDROID_CONTROL_AE_STATE,
2198             &mAeState, 1);
2199     settings.update(ANDROID_CONTROL_AF_STATE,
2200             &mAfState, 1);
2201     settings.update(ANDROID_CONTROL_AWB_STATE,
2202             &mAwbState, 1);
2203
2204     uint8_t lensState;
2205     switch (mAfState) {
2206         case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
2207         case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
2208             lensState = ANDROID_LENS_STATE_MOVING;
2209             break;
2210         case ANDROID_CONTROL_AF_STATE_INACTIVE:
2211         case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
2212         case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
2213         case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
2214         case ANDROID_CONTROL_AF_STATE_PASSIVE_UNFOCUSED:
2215         default:
2216             lensState = ANDROID_LENS_STATE_STATIONARY;
2217             break;
2218     }
2219     settings.update(ANDROID_LENS_STATE, &lensState, 1);
2220
2221 }
2222
2223 void EmulatedFakeCamera3::signalReadoutIdle() {
2224     Mutex::Autolock l(mLock);
2225     // Need to chek isIdle again because waiting on mLock may have allowed
2226     // something to be placed in the in-flight queue.
2227     if (mStatus == STATUS_ACTIVE && mReadoutThread->isIdle()) {
2228         ALOGV("Now idle");
2229         mStatus = STATUS_READY;
2230     }
2231 }
2232
2233 void EmulatedFakeCamera3::onSensorEvent(uint32_t frameNumber, Event e,
2234         nsecs_t timestamp) {
2235     switch(e) {
2236         case Sensor::SensorListener::EXPOSURE_START: {
2237             ALOGVV("%s: Frame %d: Sensor started exposure at %lld",
2238                     __FUNCTION__, frameNumber, timestamp);
2239             // Trigger shutter notify to framework
2240             camera3_notify_msg_t msg;
2241             msg.type = CAMERA3_MSG_SHUTTER;
2242             msg.message.shutter.frame_number = frameNumber;
2243             msg.message.shutter.timestamp = timestamp;
2244             sendNotify(&msg);
2245             break;
2246         }
2247         default:
2248             ALOGW("%s: Unexpected sensor event %d at %" PRId64, __FUNCTION__,
2249                     e, timestamp);
2250             break;
2251     }
2252 }
2253
2254 EmulatedFakeCamera3::ReadoutThread::ReadoutThread(EmulatedFakeCamera3 *parent) :
2255         mParent(parent), mJpegWaiting(false) {
2256 }
2257
2258 EmulatedFakeCamera3::ReadoutThread::~ReadoutThread() {
2259     for (List<Request>::iterator i = mInFlightQueue.begin();
2260          i != mInFlightQueue.end(); i++) {
2261         delete i->buffers;
2262         delete i->sensorBuffers;
2263     }
2264 }
2265
2266 void EmulatedFakeCamera3::ReadoutThread::queueCaptureRequest(const Request &r) {
2267     Mutex::Autolock l(mLock);
2268
2269     mInFlightQueue.push_back(r);
2270     mInFlightSignal.signal();
2271 }
2272
2273 bool EmulatedFakeCamera3::ReadoutThread::isIdle() {
2274     Mutex::Autolock l(mLock);
2275     return mInFlightQueue.empty() && !mThreadActive;
2276 }
2277
2278 status_t EmulatedFakeCamera3::ReadoutThread::waitForReadout() {
2279     status_t res;
2280     Mutex::Autolock l(mLock);
2281     int loopCount = 0;
2282     while (mInFlightQueue.size() >= kMaxQueueSize) {
2283         res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop);
2284         if (res != OK && res != TIMED_OUT) {
2285             ALOGE("%s: Error waiting for in-flight queue to shrink",
2286                     __FUNCTION__);
2287             return INVALID_OPERATION;
2288         }
2289         if (loopCount == kMaxWaitLoops) {
2290             ALOGE("%s: Timed out waiting for in-flight queue to shrink",
2291                     __FUNCTION__);
2292             return TIMED_OUT;
2293         }
2294         loopCount++;
2295     }
2296     return OK;
2297 }
2298
2299 bool EmulatedFakeCamera3::ReadoutThread::threadLoop() {
2300     status_t res;
2301
2302     ALOGVV("%s: ReadoutThread waiting for request", __FUNCTION__);
2303
2304     // First wait for a request from the in-flight queue
2305
2306     if (mCurrentRequest.settings.isEmpty()) {
2307         Mutex::Autolock l(mLock);
2308         if (mInFlightQueue.empty()) {
2309             res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop);
2310             if (res == TIMED_OUT) {
2311                 ALOGVV("%s: ReadoutThread: Timed out waiting for request",
2312                         __FUNCTION__);
2313                 return true;
2314             } else if (res != NO_ERROR) {
2315                 ALOGE("%s: Error waiting for capture requests: %d",
2316                         __FUNCTION__, res);
2317                 return false;
2318             }
2319         }
2320         mCurrentRequest.frameNumber = mInFlightQueue.begin()->frameNumber;
2321         mCurrentRequest.settings.acquire(mInFlightQueue.begin()->settings);
2322         mCurrentRequest.buffers = mInFlightQueue.begin()->buffers;
2323         mCurrentRequest.sensorBuffers = mInFlightQueue.begin()->sensorBuffers;
2324         mInFlightQueue.erase(mInFlightQueue.begin());
2325         mInFlightSignal.signal();
2326         mThreadActive = true;
2327         ALOGVV("%s: Beginning readout of frame %d", __FUNCTION__,
2328                 mCurrentRequest.frameNumber);
2329     }
2330
2331     // Then wait for it to be delivered from the sensor
2332     ALOGVV("%s: ReadoutThread: Wait for frame to be delivered from sensor",
2333             __FUNCTION__);
2334
2335     nsecs_t captureTime;
2336     bool gotFrame =
2337             mParent->mSensor->waitForNewFrame(kWaitPerLoop, &captureTime);
2338     if (!gotFrame) {
2339         ALOGVV("%s: ReadoutThread: Timed out waiting for sensor frame",
2340                 __FUNCTION__);
2341         return true;
2342     }
2343
2344     ALOGVV("Sensor done with readout for frame %d, captured at %lld ",
2345             mCurrentRequest.frameNumber, captureTime);
2346
2347     // Check if we need to JPEG encode a buffer, and send it for async
2348     // compression if so. Otherwise prepare the buffer for return.
2349     bool needJpeg = false;
2350     HalBufferVector::iterator buf = mCurrentRequest.buffers->begin();
2351     while(buf != mCurrentRequest.buffers->end()) {
2352         bool goodBuffer = true;
2353         if ( buf->stream->format ==
2354                 HAL_PIXEL_FORMAT_BLOB && buf->stream->data_space != HAL_DATASPACE_DEPTH) {
2355             Mutex::Autolock jl(mJpegLock);
2356             if (mJpegWaiting) {
2357                 // This shouldn't happen, because processCaptureRequest should
2358                 // be stalling until JPEG compressor is free.
2359                 ALOGE("%s: Already processing a JPEG!", __FUNCTION__);
2360                 goodBuffer = false;
2361             }
2362             if (goodBuffer) {
2363                 // Compressor takes ownership of sensorBuffers here
2364                 res = mParent->mJpegCompressor->start(mCurrentRequest.sensorBuffers,
2365                         this);
2366                 goodBuffer = (res == OK);
2367             }
2368             if (goodBuffer) {
2369                 needJpeg = true;
2370
2371                 mJpegHalBuffer = *buf;
2372                 mJpegFrameNumber = mCurrentRequest.frameNumber;
2373                 mJpegWaiting = true;
2374
2375                 mCurrentRequest.sensorBuffers = NULL;
2376                 buf = mCurrentRequest.buffers->erase(buf);
2377
2378                 continue;
2379             }
2380             ALOGE("%s: Error compressing output buffer: %s (%d)",
2381                         __FUNCTION__, strerror(-res), res);
2382             // fallthrough for cleanup
2383         }
2384         GraphicBufferMapper::get().unlock(*(buf->buffer));
2385
2386         buf->status = goodBuffer ? CAMERA3_BUFFER_STATUS_OK :
2387                 CAMERA3_BUFFER_STATUS_ERROR;
2388         buf->acquire_fence = -1;
2389         buf->release_fence = -1;
2390
2391         ++buf;
2392     } // end while
2393
2394     // Construct result for all completed buffers and results
2395
2396     camera3_capture_result result;
2397
2398     if (mParent->hasCapability(BACKWARD_COMPATIBLE)) {
2399         static const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE;
2400         mCurrentRequest.settings.update(ANDROID_STATISTICS_SCENE_FLICKER,
2401                 &sceneFlicker, 1);
2402
2403         static const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE;
2404         mCurrentRequest.settings.update(ANDROID_FLASH_STATE,
2405                 &flashState, 1);
2406
2407         nsecs_t rollingShutterSkew = Sensor::kFrameDurationRange[0];
2408         mCurrentRequest.settings.update(ANDROID_SENSOR_ROLLING_SHUTTER_SKEW,
2409                 &rollingShutterSkew, 1);
2410
2411         float focusRange[] = { 1.0f/5.0f, 0 }; // 5 m to infinity in focus
2412         mCurrentRequest.settings.update(ANDROID_LENS_FOCUS_RANGE,
2413                 focusRange, sizeof(focusRange)/sizeof(float));
2414     }
2415
2416     if (mParent->hasCapability(DEPTH_OUTPUT)) {
2417         camera_metadata_entry_t entry;
2418
2419         find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_POSE_TRANSLATION, &entry);
2420         mCurrentRequest.settings.update(ANDROID_LENS_POSE_TRANSLATION,
2421                 entry.data.f, entry.count);
2422
2423         find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_POSE_ROTATION, &entry);
2424         mCurrentRequest.settings.update(ANDROID_LENS_POSE_ROTATION,
2425                 entry.data.f, entry.count);
2426
2427         find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_INTRINSIC_CALIBRATION, &entry);
2428         mCurrentRequest.settings.update(ANDROID_LENS_INTRINSIC_CALIBRATION,
2429                 entry.data.f, entry.count);
2430
2431         find_camera_metadata_entry(mParent->mCameraInfo, ANDROID_LENS_RADIAL_DISTORTION, &entry);
2432         mCurrentRequest.settings.update(ANDROID_LENS_RADIAL_DISTORTION,
2433                 entry.data.f, entry.count);
2434     }
2435
2436     mCurrentRequest.settings.update(ANDROID_SENSOR_TIMESTAMP,
2437             &captureTime, 1);
2438
2439
2440     // JPEGs take a stage longer
2441     const uint8_t pipelineDepth = needJpeg ? kMaxBufferCount : kMaxBufferCount - 1;
2442     mCurrentRequest.settings.update(ANDROID_REQUEST_PIPELINE_DEPTH,
2443             &pipelineDepth, 1);
2444
2445     result.frame_number = mCurrentRequest.frameNumber;
2446     result.result = mCurrentRequest.settings.getAndLock();
2447     result.num_output_buffers = mCurrentRequest.buffers->size();
2448     result.output_buffers = mCurrentRequest.buffers->array();
2449     result.input_buffer = nullptr;
2450     result.partial_result = 1;
2451
2452     // Go idle if queue is empty, before sending result
2453     bool signalIdle = false;
2454     {
2455         Mutex::Autolock l(mLock);
2456         if (mInFlightQueue.empty()) {
2457             mThreadActive = false;
2458             signalIdle = true;
2459         }
2460     }
2461     if (signalIdle) mParent->signalReadoutIdle();
2462
2463     // Send it off to the framework
2464     ALOGVV("%s: ReadoutThread: Send result to framework",
2465             __FUNCTION__);
2466     mParent->sendCaptureResult(&result);
2467
2468     // Clean up
2469     mCurrentRequest.settings.unlock(result.result);
2470
2471     delete mCurrentRequest.buffers;
2472     mCurrentRequest.buffers = NULL;
2473     if (!needJpeg) {
2474         delete mCurrentRequest.sensorBuffers;
2475         mCurrentRequest.sensorBuffers = NULL;
2476     }
2477     mCurrentRequest.settings.clear();
2478
2479     return true;
2480 }
2481
2482 void EmulatedFakeCamera3::ReadoutThread::onJpegDone(
2483         const StreamBuffer &jpegBuffer, bool success) {
2484     Mutex::Autolock jl(mJpegLock);
2485
2486     GraphicBufferMapper::get().unlock(*(jpegBuffer.buffer));
2487
2488     mJpegHalBuffer.status = success ?
2489             CAMERA3_BUFFER_STATUS_OK : CAMERA3_BUFFER_STATUS_ERROR;
2490     mJpegHalBuffer.acquire_fence = -1;
2491     mJpegHalBuffer.release_fence = -1;
2492     mJpegWaiting = false;
2493
2494     camera3_capture_result result;
2495     result.frame_number = mJpegFrameNumber;
2496     result.result = NULL;
2497     result.num_output_buffers = 1;
2498     result.output_buffers = &mJpegHalBuffer;
2499
2500     if (!success) {
2501         ALOGE("%s: Compression failure, returning error state buffer to"
2502                 " framework", __FUNCTION__);
2503     } else {
2504         ALOGV("%s: Compression complete, returning buffer to framework",
2505                 __FUNCTION__);
2506     }
2507
2508     mParent->sendCaptureResult(&result);
2509 }
2510
2511 void EmulatedFakeCamera3::ReadoutThread::onJpegInputDone(
2512         const StreamBuffer &inputBuffer) {
2513     // Should never get here, since the input buffer has to be returned
2514     // by end of processCaptureRequest
2515     ALOGE("%s: Unexpected input buffer from JPEG compressor!", __FUNCTION__);
2516 }
2517
2518
2519 }; // namespace android