/* Copyright 2015 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ package cache import ( "fmt" "sync" "time" "k8s.io/apimachinery/pkg/runtime" "k8s.io/apimachinery/pkg/util/clock" utilruntime "k8s.io/apimachinery/pkg/util/runtime" "k8s.io/apimachinery/pkg/util/wait" "k8s.io/client-go/util/buffer" "k8s.io/client-go/util/retry" "k8s.io/klog" ) // SharedInformer has a shared data cache and is capable of distributing notifications for changes // to the cache to multiple listeners who registered via AddEventHandler. If you use this, there is // one behavior change compared to a standard Informer. When you receive a notification, the cache // will be AT LEAST as fresh as the notification, but it MAY be more fresh. You should NOT depend // on the contents of the cache exactly matching the notification you've received in handler // functions. If there was a create, followed by a delete, the cache may NOT have your item. This // has advantages over the broadcaster since it allows us to share a common cache across many // controllers. Extending the broadcaster would have required us keep duplicate caches for each // watch. type SharedInformer interface { // AddEventHandler adds an event handler to the shared informer using the shared informer's resync // period. Events to a single handler are delivered sequentially, but there is no coordination // between different handlers. AddEventHandler(handler ResourceEventHandler) // AddEventHandlerWithResyncPeriod adds an event handler to the shared informer using the // specified resync period. Events to a single handler are delivered sequentially, but there is // no coordination between different handlers. AddEventHandlerWithResyncPeriod(handler ResourceEventHandler, resyncPeriod time.Duration) // GetStore returns the Store. GetStore() Store // GetController gives back a synthetic interface that "votes" to start the informer GetController() Controller // Run starts the shared informer, which will be stopped when stopCh is closed. Run(stopCh <-chan struct{}) // HasSynced returns true if the shared informer's store has synced. HasSynced() bool // LastSyncResourceVersion is the resource version observed when last synced with the underlying // store. The value returned is not synchronized with access to the underlying store and is not // thread-safe. LastSyncResourceVersion() string } type SharedIndexInformer interface { SharedInformer // AddIndexers add indexers to the informer before it starts. AddIndexers(indexers Indexers) error GetIndexer() Indexer } // NewSharedInformer creates a new instance for the listwatcher. func NewSharedInformer(lw ListerWatcher, objType runtime.Object, resyncPeriod time.Duration) SharedInformer { return NewSharedIndexInformer(lw, objType, resyncPeriod, Indexers{}) } // NewSharedIndexInformer creates a new instance for the listwatcher. func NewSharedIndexInformer(lw ListerWatcher, objType runtime.Object, defaultEventHandlerResyncPeriod time.Duration, indexers Indexers) SharedIndexInformer { realClock := &clock.RealClock{} sharedIndexInformer := &sharedIndexInformer{ processor: &sharedProcessor{clock: realClock}, indexer: NewIndexer(DeletionHandlingMetaNamespaceKeyFunc, indexers), listerWatcher: lw, objectType: objType, resyncCheckPeriod: defaultEventHandlerResyncPeriod, defaultEventHandlerResyncPeriod: defaultEventHandlerResyncPeriod, cacheMutationDetector: NewCacheMutationDetector(fmt.Sprintf("%T", objType)), clock: realClock, } return sharedIndexInformer } // InformerSynced is a function that can be used to determine if an informer has synced. This is useful for determining if caches have synced. type InformerSynced func() bool const ( // syncedPollPeriod controls how often you look at the status of your sync funcs syncedPollPeriod = 100 * time.Millisecond // initialBufferSize is the initial number of event notifications that can be buffered. initialBufferSize = 1024 ) // WaitForCacheSync waits for caches to populate. It returns true if it was successful, false // if the controller should shutdown func WaitForCacheSync(stopCh <-chan struct{}, cacheSyncs ...InformerSynced) bool { err := wait.PollUntil(syncedPollPeriod, func() (bool, error) { for _, syncFunc := range cacheSyncs { if !syncFunc() { return false, nil } } return true, nil }, stopCh) if err != nil { klog.V(2).Infof("stop requested") return false } klog.V(4).Infof("caches populated") return true } type sharedIndexInformer struct { indexer Indexer controller Controller processor *sharedProcessor cacheMutationDetector CacheMutationDetector // This block is tracked to handle late initialization of the controller listerWatcher ListerWatcher objectType runtime.Object // resyncCheckPeriod is how often we want the reflector's resync timer to fire so it can call // shouldResync to check if any of our listeners need a resync. resyncCheckPeriod time.Duration // defaultEventHandlerResyncPeriod is the default resync period for any handlers added via // AddEventHandler (i.e. they don't specify one and just want to use the shared informer's default // value). defaultEventHandlerResyncPeriod time.Duration // clock allows for testability clock clock.Clock started, stopped bool startedLock sync.Mutex // blockDeltas gives a way to stop all event distribution so that a late event handler // can safely join the shared informer. blockDeltas sync.Mutex } // dummyController hides the fact that a SharedInformer is different from a dedicated one // where a caller can `Run`. The run method is disconnected in this case, because higher // level logic will decide when to start the SharedInformer and related controller. // Because returning information back is always asynchronous, the legacy callers shouldn't // notice any change in behavior. type dummyController struct { informer *sharedIndexInformer } func (v *dummyController) Run(stopCh <-chan struct{}) { } func (v *dummyController) HasSynced() bool { return v.informer.HasSynced() } func (c *dummyController) LastSyncResourceVersion() string { return "" } type updateNotification struct { oldObj interface{} newObj interface{} } type addNotification struct { newObj interface{} } type deleteNotification struct { oldObj interface{} } func (s *sharedIndexInformer) Run(stopCh <-chan struct{}) { defer utilruntime.HandleCrash() fifo := NewDeltaFIFO(MetaNamespaceKeyFunc, s.indexer) cfg := &Config{ Queue: fifo, ListerWatcher: s.listerWatcher, ObjectType: s.objectType, FullResyncPeriod: s.resyncCheckPeriod, RetryOnError: false, ShouldResync: s.processor.shouldResync, Process: s.HandleDeltas, } func() { s.startedLock.Lock() defer s.startedLock.Unlock() s.controller = New(cfg) s.controller.(*controller).clock = s.clock s.started = true }() // Separate stop channel because Processor should be stopped strictly after controller processorStopCh := make(chan struct{}) var wg wait.Group defer wg.Wait() // Wait for Processor to stop defer close(processorStopCh) // Tell Processor to stop wg.StartWithChannel(processorStopCh, s.cacheMutationDetector.Run) wg.StartWithChannel(processorStopCh, s.processor.run) defer func() { s.startedLock.Lock() defer s.startedLock.Unlock() s.stopped = true // Don't want any new listeners }() s.controller.Run(stopCh) } func (s *sharedIndexInformer) HasSynced() bool { s.startedLock.Lock() defer s.startedLock.Unlock() if s.controller == nil { return false } return s.controller.HasSynced() } func (s *sharedIndexInformer) LastSyncResourceVersion() string { s.startedLock.Lock() defer s.startedLock.Unlock() if s.controller == nil { return "" } return s.controller.LastSyncResourceVersion() } func (s *sharedIndexInformer) GetStore() Store { return s.indexer } func (s *sharedIndexInformer) GetIndexer() Indexer { return s.indexer } func (s *sharedIndexInformer) AddIndexers(indexers Indexers) error { s.startedLock.Lock() defer s.startedLock.Unlock() if s.started { return fmt.Errorf("informer has already started") } return s.indexer.AddIndexers(indexers) } func (s *sharedIndexInformer) GetController() Controller { return &dummyController{informer: s} } func (s *sharedIndexInformer) AddEventHandler(handler ResourceEventHandler) { s.AddEventHandlerWithResyncPeriod(handler, s.defaultEventHandlerResyncPeriod) } func determineResyncPeriod(desired, check time.Duration) time.Duration { if desired == 0 { return desired } if check == 0 { klog.Warningf("The specified resyncPeriod %v is invalid because this shared informer doesn't support resyncing", desired) return 0 } if desired < check { klog.Warningf("The specified resyncPeriod %v is being increased to the minimum resyncCheckPeriod %v", desired, check) return check } return desired } const minimumResyncPeriod = 1 * time.Second func (s *sharedIndexInformer) AddEventHandlerWithResyncPeriod(handler ResourceEventHandler, resyncPeriod time.Duration) { s.startedLock.Lock() defer s.startedLock.Unlock() if s.stopped { klog.V(2).Infof("Handler %v was not added to shared informer because it has stopped already", handler) return } if resyncPeriod > 0 { if resyncPeriod < minimumResyncPeriod { klog.Warningf("resyncPeriod %d is too small. Changing it to the minimum allowed value of %d", resyncPeriod, minimumResyncPeriod) resyncPeriod = minimumResyncPeriod } if resyncPeriod < s.resyncCheckPeriod { if s.started { klog.Warningf("resyncPeriod %d is smaller than resyncCheckPeriod %d and the informer has already started. Changing it to %d", resyncPeriod, s.resyncCheckPeriod, s.resyncCheckPeriod) resyncPeriod = s.resyncCheckPeriod } else { // if the event handler's resyncPeriod is smaller than the current resyncCheckPeriod, update // resyncCheckPeriod to match resyncPeriod and adjust the resync periods of all the listeners // accordingly s.resyncCheckPeriod = resyncPeriod s.processor.resyncCheckPeriodChanged(resyncPeriod) } } } listener := newProcessListener(handler, resyncPeriod, determineResyncPeriod(resyncPeriod, s.resyncCheckPeriod), s.clock.Now(), initialBufferSize) if !s.started { s.processor.addListener(listener) return } // in order to safely join, we have to // 1. stop sending add/update/delete notifications // 2. do a list against the store // 3. send synthetic "Add" events to the new handler // 4. unblock s.blockDeltas.Lock() defer s.blockDeltas.Unlock() s.processor.addListener(listener) for _, item := range s.indexer.List() { listener.add(addNotification{newObj: item}) } } func (s *sharedIndexInformer) HandleDeltas(obj interface{}) error { s.blockDeltas.Lock() defer s.blockDeltas.Unlock() // from oldest to newest for _, d := range obj.(Deltas) { switch d.Type { case Sync, Added, Updated: isSync := d.Type == Sync s.cacheMutationDetector.AddObject(d.Object) if old, exists, err := s.indexer.Get(d.Object); err == nil && exists { if err := s.indexer.Update(d.Object); err != nil { return err } s.processor.distribute(updateNotification{oldObj: old, newObj: d.Object}, isSync) } else { if err := s.indexer.Add(d.Object); err != nil { return err } s.processor.distribute(addNotification{newObj: d.Object}, isSync) } case Deleted: if err := s.indexer.Delete(d.Object); err != nil { return err } s.processor.distribute(deleteNotification{oldObj: d.Object}, false) } } return nil } type sharedProcessor struct { listenersStarted bool listenersLock sync.RWMutex listeners []*processorListener syncingListeners []*processorListener clock clock.Clock wg wait.Group } func (p *sharedProcessor) addListener(listener *processorListener) { p.listenersLock.Lock() defer p.listenersLock.Unlock() p.addListenerLocked(listener) if p.listenersStarted { p.wg.Start(listener.run) p.wg.Start(listener.pop) } } func (p *sharedProcessor) addListenerLocked(listener *processorListener) { p.listeners = append(p.listeners, listener) p.syncingListeners = append(p.syncingListeners, listener) } func (p *sharedProcessor) distribute(obj interface{}, sync bool) { p.listenersLock.RLock() defer p.listenersLock.RUnlock() if sync { for _, listener := range p.syncingListeners { listener.add(obj) } } else { for _, listener := range p.listeners { listener.add(obj) } } } func (p *sharedProcessor) run(stopCh <-chan struct{}) { func() { p.listenersLock.RLock() defer p.listenersLock.RUnlock() for _, listener := range p.listeners { p.wg.Start(listener.run) p.wg.Start(listener.pop) } p.listenersStarted = true }() <-stopCh p.listenersLock.RLock() defer p.listenersLock.RUnlock() for _, listener := range p.listeners { close(listener.addCh) // Tell .pop() to stop. .pop() will tell .run() to stop } p.wg.Wait() // Wait for all .pop() and .run() to stop } // shouldResync queries every listener to determine if any of them need a resync, based on each // listener's resyncPeriod. func (p *sharedProcessor) shouldResync() bool { p.listenersLock.Lock() defer p.listenersLock.Unlock() p.syncingListeners = []*processorListener{} resyncNeeded := false now := p.clock.Now() for _, listener := range p.listeners { // need to loop through all the listeners to see if they need to resync so we can prepare any // listeners that are going to be resyncing. if listener.shouldResync(now) { resyncNeeded = true p.syncingListeners = append(p.syncingListeners, listener) listener.determineNextResync(now) } } return resyncNeeded } func (p *sharedProcessor) resyncCheckPeriodChanged(resyncCheckPeriod time.Duration) { p.listenersLock.RLock() defer p.listenersLock.RUnlock() for _, listener := range p.listeners { resyncPeriod := determineResyncPeriod(listener.requestedResyncPeriod, resyncCheckPeriod) listener.setResyncPeriod(resyncPeriod) } } type processorListener struct { nextCh chan interface{} addCh chan interface{} handler ResourceEventHandler // pendingNotifications is an unbounded ring buffer that holds all notifications not yet distributed. // There is one per listener, but a failing/stalled listener will have infinite pendingNotifications // added until we OOM. // TODO: This is no worse than before, since reflectors were backed by unbounded DeltaFIFOs, but // we should try to do something better. pendingNotifications buffer.RingGrowing // requestedResyncPeriod is how frequently the listener wants a full resync from the shared informer requestedResyncPeriod time.Duration // resyncPeriod is how frequently the listener wants a full resync from the shared informer. This // value may differ from requestedResyncPeriod if the shared informer adjusts it to align with the // informer's overall resync check period. resyncPeriod time.Duration // nextResync is the earliest time the listener should get a full resync nextResync time.Time // resyncLock guards access to resyncPeriod and nextResync resyncLock sync.Mutex } func newProcessListener(handler ResourceEventHandler, requestedResyncPeriod, resyncPeriod time.Duration, now time.Time, bufferSize int) *processorListener { ret := &processorListener{ nextCh: make(chan interface{}), addCh: make(chan interface{}), handler: handler, pendingNotifications: *buffer.NewRingGrowing(bufferSize), requestedResyncPeriod: requestedResyncPeriod, resyncPeriod: resyncPeriod, } ret.determineNextResync(now) return ret } func (p *processorListener) add(notification interface{}) { p.addCh <- notification } func (p *processorListener) pop() { defer utilruntime.HandleCrash() defer close(p.nextCh) // Tell .run() to stop var nextCh chan<- interface{} var notification interface{} for { select { case nextCh <- notification: // Notification dispatched var ok bool notification, ok = p.pendingNotifications.ReadOne() if !ok { // Nothing to pop nextCh = nil // Disable this select case } case notificationToAdd, ok := <-p.addCh: if !ok { return } if notification == nil { // No notification to pop (and pendingNotifications is empty) // Optimize the case - skip adding to pendingNotifications notification = notificationToAdd nextCh = p.nextCh } else { // There is already a notification waiting to be dispatched p.pendingNotifications.WriteOne(notificationToAdd) } } } } func (p *processorListener) run() { // this call blocks until the channel is closed. When a panic happens during the notification // we will catch it, **the offending item will be skipped!**, and after a short delay (one second) // the next notification will be attempted. This is usually better than the alternative of never // delivering again. stopCh := make(chan struct{}) wait.Until(func() { // this gives us a few quick retries before a long pause and then a few more quick retries err := wait.ExponentialBackoff(retry.DefaultRetry, func() (bool, error) { for next := range p.nextCh { switch notification := next.(type) { case updateNotification: p.handler.OnUpdate(notification.oldObj, notification.newObj) case addNotification: p.handler.OnAdd(notification.newObj) case deleteNotification: p.handler.OnDelete(notification.oldObj) default: utilruntime.HandleError(fmt.Errorf("unrecognized notification: %#v", next)) } } // the only way to get here is if the p.nextCh is empty and closed return true, nil }) // the only way to get here is if the p.nextCh is empty and closed if err == nil { close(stopCh) } }, 1*time.Minute, stopCh) } // shouldResync deterimines if the listener needs a resync. If the listener's resyncPeriod is 0, // this always returns false. func (p *processorListener) shouldResync(now time.Time) bool { p.resyncLock.Lock() defer p.resyncLock.Unlock() if p.resyncPeriod == 0 { return false } return now.After(p.nextResync) || now.Equal(p.nextResync) } func (p *processorListener) determineNextResync(now time.Time) { p.resyncLock.Lock() defer p.resyncLock.Unlock() p.nextResync = now.Add(p.resyncPeriod) } func (p *processorListener) setResyncPeriod(resyncPeriod time.Duration) { p.resyncLock.Lock() defer p.resyncLock.Unlock() p.resyncPeriod = resyncPeriod }