# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.slim_nets.resnet_v2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from nets import resnet_utils from nets import resnet_v2 slim = tf.contrib.slim def create_test_input(batch_size, height, width, channels): """Create test input tensor. Args: batch_size: The number of images per batch or `None` if unknown. height: The height of each image or `None` if unknown. width: The width of each image or `None` if unknown. channels: The number of channels per image or `None` if unknown. Returns: Either a placeholder `Tensor` of dimension [batch_size, height, width, channels] if any of the inputs are `None` or a constant `Tensor` with the mesh grid values along the spatial dimensions. """ if None in [batch_size, height, width, channels]: return tf.placeholder(tf.float32, (batch_size, height, width, channels)) else: return tf.to_float( np.tile( np.reshape( np.reshape(np.arange(height), [height, 1]) + np.reshape(np.arange(width), [1, width]), [1, height, width, 1]), [batch_size, 1, 1, channels])) class ResnetUtilsTest(tf.test.TestCase): def testSubsampleThreeByThree(self): x = tf.reshape(tf.to_float(tf.range(9)), [1, 3, 3, 1]) x = resnet_utils.subsample(x, 2) expected = tf.reshape(tf.constant([0, 2, 6, 8]), [1, 2, 2, 1]) with self.test_session(): self.assertAllClose(x.eval(), expected.eval()) def testSubsampleFourByFour(self): x = tf.reshape(tf.to_float(tf.range(16)), [1, 4, 4, 1]) x = resnet_utils.subsample(x, 2) expected = tf.reshape(tf.constant([0, 2, 8, 10]), [1, 2, 2, 1]) with self.test_session(): self.assertAllClose(x.eval(), expected.eval()) def testConv2DSameEven(self): n, n2 = 4, 2 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = tf.reshape(w, [3, 3, 1, 1]) tf.get_variable('Conv/weights', initializer=w) tf.get_variable('Conv/biases', initializer=tf.zeros([1])) tf.get_variable_scope().reuse_variables() y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = tf.to_float([[14, 28, 43, 26], [28, 48, 66, 37], [43, 66, 84, 46], [26, 37, 46, 22]]) y1_expected = tf.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = tf.to_float([[14, 43], [43, 84]]) y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = tf.to_float([[48, 37], [37, 22]]) y4_expected = tf.reshape(y4_expected, [1, n2, n2, 1]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def testConv2DSameOdd(self): n, n2 = 5, 3 # Input image. x = create_test_input(1, n, n, 1) # Convolution kernel. w = create_test_input(1, 3, 3, 1) w = tf.reshape(w, [3, 3, 1, 1]) tf.get_variable('Conv/weights', initializer=w) tf.get_variable('Conv/biases', initializer=tf.zeros([1])) tf.get_variable_scope().reuse_variables() y1 = slim.conv2d(x, 1, [3, 3], stride=1, scope='Conv') y1_expected = tf.to_float([[14, 28, 43, 58, 34], [28, 48, 66, 84, 46], [43, 66, 84, 102, 55], [58, 84, 102, 120, 64], [34, 46, 55, 64, 30]]) y1_expected = tf.reshape(y1_expected, [1, n, n, 1]) y2 = resnet_utils.subsample(y1, 2) y2_expected = tf.to_float([[14, 43, 34], [43, 84, 55], [34, 55, 30]]) y2_expected = tf.reshape(y2_expected, [1, n2, n2, 1]) y3 = resnet_utils.conv2d_same(x, 1, 3, stride=2, scope='Conv') y3_expected = y2_expected y4 = slim.conv2d(x, 1, [3, 3], stride=2, scope='Conv') y4_expected = y2_expected with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertAllClose(y1.eval(), y1_expected.eval()) self.assertAllClose(y2.eval(), y2_expected.eval()) self.assertAllClose(y3.eval(), y3_expected.eval()) self.assertAllClose(y4.eval(), y4_expected.eval()) def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None): """A plain ResNet without extra layers before or after the ResNet blocks.""" with tf.variable_scope(scope, values=[inputs]): with slim.arg_scope([slim.conv2d], outputs_collections='end_points'): net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) end_points = slim.utils.convert_collection_to_dict('end_points') return net, end_points def testEndPointsV2(self): """Test the end points of a tiny v2 bottleneck network.""" blocks = [ resnet_v2.resnet_v2_block( 'block1', base_depth=1, num_units=2, stride=2), resnet_v2.resnet_v2_block( 'block2', base_depth=2, num_units=2, stride=1), ] inputs = create_test_input(2, 32, 16, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_plain(inputs, blocks, scope='tiny') expected = [ 'tiny/block1/unit_1/bottleneck_v2/shortcut', 'tiny/block1/unit_1/bottleneck_v2/conv1', 'tiny/block1/unit_1/bottleneck_v2/conv2', 'tiny/block1/unit_1/bottleneck_v2/conv3', 'tiny/block1/unit_2/bottleneck_v2/conv1', 'tiny/block1/unit_2/bottleneck_v2/conv2', 'tiny/block1/unit_2/bottleneck_v2/conv3', 'tiny/block2/unit_1/bottleneck_v2/shortcut', 'tiny/block2/unit_1/bottleneck_v2/conv1', 'tiny/block2/unit_1/bottleneck_v2/conv2', 'tiny/block2/unit_1/bottleneck_v2/conv3', 'tiny/block2/unit_2/bottleneck_v2/conv1', 'tiny/block2/unit_2/bottleneck_v2/conv2', 'tiny/block2/unit_2/bottleneck_v2/conv3'] self.assertItemsEqual(expected, end_points) def _stack_blocks_nondense(self, net, blocks): """A simplified ResNet Block stacker without output stride control.""" for block in blocks: with tf.variable_scope(block.scope, 'block', [net]): for i, unit in enumerate(block.args): with tf.variable_scope('unit_%d' % (i + 1), values=[net]): net = block.unit_fn(net, rate=1, **unit) return net def testAtrousValuesBottleneck(self): """Verify the values of dense feature extraction by atrous convolution. Make sure that dense feature extraction by stack_blocks_dense() followed by subsampling gives identical results to feature extraction at the nominal network output stride using the simple self._stack_blocks_nondense() above. """ block = resnet_v2.resnet_v2_block blocks = [ block('block1', base_depth=1, num_units=2, stride=2), block('block2', base_depth=2, num_units=2, stride=2), block('block3', base_depth=4, num_units=2, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] nominal_stride = 8 # Test both odd and even input dimensions. height = 30 width = 31 with slim.arg_scope(resnet_utils.resnet_arg_scope()): with slim.arg_scope([slim.batch_norm], is_training=False): for output_stride in [1, 2, 4, 8, None]: with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) inputs = create_test_input(1, height, width, 3) # Dense feature extraction followed by subsampling. output = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. tf.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected = self._stack_blocks_nondense(inputs, blocks) sess.run(tf.global_variables_initializer()) output, expected = sess.run([output, expected]) self.assertAllClose(output, expected, atol=1e-4, rtol=1e-4) class ResnetCompleteNetworkTest(tf.test.TestCase): """Tests with complete small ResNet v2 networks.""" def _resnet_small(self, inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope='resnet_v2_small'): """A shallow and thin ResNet v2 for faster tests.""" block = resnet_v2.resnet_v2_block blocks = [ block('block1', base_depth=1, num_units=3, stride=2), block('block2', base_depth=2, num_units=3, stride=2), block('block3', base_depth=4, num_units=3, stride=2), block('block4', base_depth=8, num_units=2, stride=1), ] return resnet_v2.resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=include_root_block, reuse=reuse, scope=scope) def testClassificationEndPoints(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes]) self.assertTrue('predictions' in end_points) self.assertListEqual(end_points['predictions'].get_shape().as_list(), [2, 1, 1, num_classes]) def testClassificationShapes(self): global_pool = True num_classes = 10 inputs = create_test_input(2, 224, 224, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 28, 28, 4], 'resnet/block2': [2, 14, 14, 8], 'resnet/block3': [2, 7, 7, 16], 'resnet/block4': [2, 7, 7, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 21, 21, 8], 'resnet/block3': [2, 11, 11, 16], 'resnet/block4': [2, 11, 11, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testRootlessFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 inputs = create_test_input(2, 128, 128, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, include_root_block=False, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 64, 64, 4], 'resnet/block2': [2, 32, 32, 8], 'resnet/block3': [2, 16, 16, 16], 'resnet/block4': [2, 16, 16, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalEndpointShapes(self): global_pool = False num_classes = 10 output_stride = 8 inputs = create_test_input(2, 321, 321, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): _, end_points = self._resnet_small(inputs, num_classes, global_pool=global_pool, output_stride=output_stride, scope='resnet') endpoint_to_shape = { 'resnet/block1': [2, 41, 41, 4], 'resnet/block2': [2, 41, 41, 8], 'resnet/block3': [2, 41, 41, 16], 'resnet/block4': [2, 41, 41, 32]} for endpoint in endpoint_to_shape: shape = endpoint_to_shape[endpoint] self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) def testAtrousFullyConvolutionalValues(self): """Verify dense feature extraction with atrous convolution.""" nominal_stride = 32 for output_stride in [4, 8, 16, 32, None]: with slim.arg_scope(resnet_utils.resnet_arg_scope()): with tf.Graph().as_default(): with self.test_session() as sess: tf.set_random_seed(0) inputs = create_test_input(2, 81, 81, 3) # Dense feature extraction followed by subsampling. output, _ = self._resnet_small(inputs, None, is_training=False, global_pool=False, output_stride=output_stride) if output_stride is None: factor = 1 else: factor = nominal_stride // output_stride output = resnet_utils.subsample(output, factor) # Make the two networks use the same weights. tf.get_variable_scope().reuse_variables() # Feature extraction at the nominal network rate. expected, _ = self._resnet_small(inputs, None, is_training=False, global_pool=False) sess.run(tf.global_variables_initializer()) self.assertAllClose(output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) def testUnknownBatchSize(self): batch = 2 height, width = 65, 65 global_pool = True num_classes = 10 inputs = create_test_input(None, height, width, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): logits, _ = self._resnet_small(inputs, num_classes, global_pool=global_pool, scope='resnet') self.assertTrue(logits.op.name.startswith('resnet/logits')) self.assertListEqual(logits.get_shape().as_list(), [None, 1, 1, num_classes]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(logits, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 1, 1, num_classes)) def testFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 3, 3, 32)) def testAtrousFullyConvolutionalUnknownHeightWidth(self): batch = 2 height, width = 65, 65 global_pool = False output_stride = 8 inputs = create_test_input(batch, None, None, 3) with slim.arg_scope(resnet_utils.resnet_arg_scope()): output, _ = self._resnet_small(inputs, None, global_pool=global_pool, output_stride=output_stride) self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32]) images = create_test_input(batch, height, width, 3) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output, {inputs: images.eval()}) self.assertEqual(output.shape, (batch, 9, 9, 32)) if __name__ == '__main__': tf.test.main()