pcb defect detetcion application
[ealt-edge.git] / example-apps / PDD / pcb-defect-detection / libs / box_utils / cython_utils / nms.pyx
diff --git a/example-apps/PDD/pcb-defect-detection/libs/box_utils/cython_utils/nms.pyx b/example-apps/PDD/pcb-defect-detection/libs/box_utils/cython_utils/nms.pyx
new file mode 100755 (executable)
index 0000000..344f66d
--- /dev/null
@@ -0,0 +1,123 @@
+# --------------------------------------------------------
+# Fast R-CNN
+# Copyright (c) 2015 Microsoft
+# Licensed under The MIT License [see LICENSE for details]
+# Written by Ross Girshick
+# --------------------------------------------------------
+
+import numpy as np
+cimport numpy as np
+
+cdef inline np.float32_t max(np.float32_t a, np.float32_t b):
+    return a if a >= b else b
+
+cdef inline np.float32_t min(np.float32_t a, np.float32_t b):
+    return a if a <= b else b
+
+def nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
+    cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
+    cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+    cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
+    cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
+    cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
+
+    cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+    cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
+
+    cdef int ndets = dets.shape[0]
+    cdef np.ndarray[np.int_t, ndim=1] suppressed = \
+            np.zeros((ndets), dtype=np.int)
+
+    # nominal indices
+    cdef int _i, _j
+    # sorted indices
+    cdef int i, j
+    # temp variables for box i's (the box currently under consideration)
+    cdef np.float32_t ix1, iy1, ix2, iy2, iarea
+    # variables for computing overlap with box j (lower scoring box)
+    cdef np.float32_t xx1, yy1, xx2, yy2
+    cdef np.float32_t w, h
+    cdef np.float32_t inter, ovr
+
+    keep = []
+    for _i in range(ndets):
+        i = order[_i]
+        if suppressed[i] == 1:
+            continue
+        keep.append(i)
+        ix1 = x1[i]
+        iy1 = y1[i]
+        ix2 = x2[i]
+        iy2 = y2[i]
+        iarea = areas[i]
+        for _j in range(_i + 1, ndets):
+            j = order[_j]
+            if suppressed[j] == 1:
+                continue
+            xx1 = max(ix1, x1[j])
+            yy1 = max(iy1, y1[j])
+            xx2 = min(ix2, x2[j])
+            yy2 = min(iy2, y2[j])
+            w = max(0.0, xx2 - xx1 + 1)
+            h = max(0.0, yy2 - yy1 + 1)
+            inter = w * h
+            ovr = inter / (iarea + areas[j] - inter)
+            if ovr >= thresh:
+                suppressed[j] = 1
+
+    return keep
+
+def nms_new(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):
+    cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]
+    cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]
+    cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]
+    cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]
+    cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]
+
+    cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+    cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]
+
+    cdef int ndets = dets.shape[0]
+    cdef np.ndarray[np.int_t, ndim=1] suppressed = \
+            np.zeros((ndets), dtype=np.int)
+
+    # nominal indices
+    cdef int _i, _j
+    # sorted indices
+    cdef int i, j
+    # temp variables for box i's (the box currently under consideration)
+    cdef np.float32_t ix1, iy1, ix2, iy2, iarea
+    # variables for computing overlap with box j (lower scoring box)
+    cdef np.float32_t xx1, yy1, xx2, yy2
+    cdef np.float32_t w, h
+    cdef np.float32_t inter, ovr
+
+    keep = []
+    for _i in range(ndets):
+        i = order[_i]
+        if suppressed[i] == 1:
+            continue
+        keep.append(i)
+        ix1 = x1[i]
+        iy1 = y1[i]
+        ix2 = x2[i]
+        iy2 = y2[i]
+        iarea = areas[i]
+        for _j in range(_i + 1, ndets):
+            j = order[_j]
+            if suppressed[j] == 1:
+                continue
+            xx1 = max(ix1, x1[j])
+            yy1 = max(iy1, y1[j])
+            xx2 = min(ix2, x2[j])
+            yy2 = min(iy2, y2[j])
+            w = max(0.0, xx2 - xx1 + 1)
+            h = max(0.0, yy2 - yy1 + 1)
+            inter = w * h
+            ovr = inter / (iarea + areas[j] - inter)
+            ovr1 = inter / iarea
+            ovr2 = inter / areas[j]
+            if ovr >= thresh or ovr1 > 0.95 or ovr2 > 0.95:
+                suppressed[j] = 1
+
+    return keep